Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T08:10:52.512Z Has data issue: false hasContentIssue false

Electrochemical Sulfur Treatments of GaAs Using Na2S and (NH4)2S Solutions: A Surface Chemical Study

Published online by Cambridge University Press:  22 February 2011

J. Yota
Affiliation:
Department of Chemical, Bio, and Materials Engineering and Center for Solid State Electronics Research, Arizona State University, Tempe, Arizona 85287–6006
V. A. Burrows
Affiliation:
Department of Chemical, Bio, and Materials Engineering and Center for Solid State Electronics Research, Arizona State University, Tempe, Arizona 85287–6006
Get access

Abstract

Chemical sulfur treatments of GaAs have been shown to improve the GaAs surface electronic properties. These treatments result in lower surface state density, lower surface recombination velocity, and shifting or unpinning of the Fermi level, in addition to improvement in the performance of devices. However, there is still considerable controversy regarding the chemical nature of the surface film which results from this chemical sulfidation. It has been shown that this film is not stable chemically and electronically. The improved surface electronic properties decay with time and are sensitive to the chemical environment of the material. In this study, using surface infrared reflection spectroscopy (SIRS) and x-ray photoelectron spectroscopy (XPS), we have investigated the electrochemical sulfidation of GaAs as a possible new method to produce a GaAs surface that is stable chemically and electronically. We have found that anodic treatments with Na2S and (NH4S solutions result in the removal of the pre-existing oxide of GaAs and the formation of films comprising sulfur, sodium carbonate, ammonium thiosulfate, and sulfide and sulfur-oxygen compounds of arsenic. Rinsing the GaAs with water removes the bulk of the film, leaving behind a surface on which only arsenic sulfide was detected.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Yablonovitch, E., Sandroff, C. J., Bhat, R., and Gmitter, T., Appl. Phys. Lett. 51, 439 (1987).Google Scholar
[2] Fan, J. F., Oigawa, H., and Nannichi, Y., Jpn. J. Appl. Phys. 27, L1331 (1988).Google Scholar
[3] Carpenter, M. S., Melloch, M. R., Lundstrom, M. S., and Tobin, S. P., Appl. Phys. Lett. 52, 2157 (1988).Google Scholar
[4] Besser, R. S. and Helms, C. R., Appl. Phys. Lett. 52, 1707 (1988).Google Scholar
[5] Hasegawa, H., Ishii, H., Sawada, T., Saitoh, T., Konshi, S., Liu, Y., and Ohno, H., J. Vac. Sci. Technol. B 6, 1184 (1988).Google Scholar
[6] Carpenter, M. S., Melloch, M. R., and Dungan, T. E., Appl. Phys. Lett. 53, 66 (1988)Google Scholar
[7] Sandroff, C. J., Nottenburg, R. N., Bischoff, J. C., and Bhat, R., Appl. Phys. Lett. 51 33 (1987).Google Scholar
[8] Nottenburg, R. N., Sandroff, C. J., Humphrey, D. H., Hollenbeck, T. H., and Bhat, R., Appl. Phys. Lett. 52, 218 (1988).Google Scholar
[9] Fan, J. F., Kurata, Y., and Nannichi, Y., Jpn. J. Appl. Phys. 28, 2255 (1989).Google Scholar
[10] Mauk, M. G., Xu, S., Arent, D. J., Mertens, R. P., and Borghs, G., Appl. Phys. Lett. 54, 213 (1989).Google Scholar
[11] Kamiyama, S., Mori, Y., Takahashi, Y., and Ohnaka, K., Appl. Phys. Lett. 58, 2595 (1991).Google Scholar
[12] Tamanuki, T., Koyama, F., and Iga, K., Jpn. J. Appl. Phys. 30, 499 (1991).Google Scholar
[13] Tiedje, T., Wong, P. C., Mitchell, K. A. R., Eberhardt, W., Fu, Z., and Sondericker, D., Solid State Comm. 70, 355 (1989).Google Scholar
[14] Hirayama, H., Matsumoto, Y., Oigawa, H., and Nannichi, Y., Appl. Phys. Lett. 54, 2565 (1989).Google Scholar
[15] Sandroff, C. J., Hedge, M. S., and Chang, C. C., J. Vac. Sci. Technol. B 7, 841 (1989).Google Scholar
[16] Shin, J., Geib, K. M., and Wilmsen, C. W., J. Vac. Sci. Technol. B 9, 2337 (1991).Google Scholar
[17] Oigawa, H., Fan, J. F., Nannichi, Y., Ando, K., Saiki, K., and Koma, A., Jpn. J. Appl. Phys. 28, L340 (1989).Google Scholar
[18] Spindt, C. J., Liu, D., Miyano, K., Meissner, P. L., Chiang, T. T., Kendelewics, T., Lindau, I., and Spicer, W. E., Appl. Phys. Lett. 55, 861 (1989).Google Scholar
[19] Tiedje, T., Colbow, K. M., Rogers, D., Fu, Z., and Eberhardt, W., J. Vac. Sci. Technol. B 7, 837 (1989).Google Scholar
[20] Wilmsen, C. W., Kirchner, P. D., Baker, J. M., Mclnturff, D. T., Pettit, G. D., and Woodall, J. M., J. Vac. Technol. B 6, 1180 (1988).Google Scholar
[21] Wilmsen, C. W., Kirchner, P. D., Woodall, J. M., J. Appl. Phys. 64, 3287 (1988).Google Scholar
[22] Skromme, B. J., Sandroff, C. J., Yablonovitch, E., and Gmitter, T., Appl. Phys. Lett. 51 2022 (1987).Google Scholar
[23] Yota, J. and Burrows, V. A., Mat. Res. Soc. Symp. Proc. 237, 329 (1992).Google Scholar
[24] Yota, J. and Burrows, V. A., Mat. Res. Soc. Symp. Proc. 259, 281 (1992).Google Scholar
[25] Yota, J. and Burrows, V. A., J. Vac. Sci. Technol. A 11, (1993), in press.Google Scholar
[26] Strong, R. L., Luttmer, J. D., Little, D. D., Teherani, T. H., and Helms, C. R., J. Vac. Sci. Technol. A 5, 3207 (1987).Google Scholar
[27] Ziegler, J. P., Lindquist, L. M., and Hemminger, J. C., J. Appl. Phys. 65, 2523 (1989).Google Scholar
[28] Nemirovski, Y., Burstein, L., and Kidron, I., J. Appl. Phys. 58, 366 (1985).Google Scholar
[29] Burrows, V. A. and Yota, J., Thin Solid Films 193, 371 (1990).Google Scholar
[30] Yota, J. and Burrows, V. A., J. Appl. Phys. 69, 7369 (1991).Google Scholar
[31] Yota, J. and Burrows, V. A., J. Vac. Sci. Technol. A 10, 837 (1992).Google Scholar
[32] Barrow, G. M., J. Chem. Phys 21, 219 (1953).Google Scholar
[33] Pouchert, C. J., The Aldrich Library of Infrared Spectra (Aldrich, Milwaukee, WI, 1981).Google Scholar
[34] Miller, F. A. and Wilkins, C. H., Anal. Chem. 24, 1253 (1952).Google Scholar
[35] Wagner, C., Riggs, W. M., Davis, L. E., Moulder, J. F., and Mulllenberg, G. E., Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, MN, 1979).Google Scholar