Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T12:24:10.112Z Has data issue: false hasContentIssue false

Electrochemical Reduction of CO2 using Supported Cu2O Catalysts

Published online by Cambridge University Press:  28 June 2013

Joel Bugayong
Affiliation:
Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, U.S.A.
Gregory L. Griffin
Affiliation:
Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, U.S.A.
Get access

Abstract

We have studied the electrochemical reduction of CO2 to produce short chain hydrocarbons and alcohols using supported Cu2O electrocatalysts. The catalysts are prepared using Cu2O nanoparticles formed by chemical reduction of aqueous CuCl2 mixed with polyethylene glycol surfactant, followed by addition of NaOH and L-ascorbic acid (sodium). The nanoparticles are then added to a Nafion/ethanol solution and coated onto a carbon fiber support. When tested used for CO2 electroreduction at −1.5 V(NHE), the Cu2O particles are reduced to metallic Cu, but the hydrocarbon product distribution remains different from that reported for conventional metallic Cu electrodes. Ethylene is the major hydrocarbon produced, with a Faradaic efficiency around 25%, while the efficiency for CH4 formation is reduced to around 1%. The major alcohol product is ethanol, with a Faradaic efficiency around 6%. The relative formation rates of the individual products are discussed in terms of the relevant branch points in recent computational models for the overall reaction mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bell, A.T., in “Basic Research Needs: Catalysis for Energy”; U.S. Department of Energy, Office of Basic Energy Sciences Workshop August 6-8, 2007; available at: http://science.energy.gov/bes/news-and-resources/reports/basic-research-needs/ Google Scholar
Kerr, R. A., Science 331, 1510 (2011).CrossRefGoogle ScholarPubMed
Varghese, O. K., Paulose, M., LaTempa, T. J., and Grimes, C. A., Nano Letters 9(2) 731 (2009).CrossRefGoogle Scholar
Pan, Y., et al. ., Science 333, 988 (2011).CrossRefGoogle Scholar
Hori, Y., “Electrochemical CO2 Reduction on Metal Electrodes”, in Modern Aspects of Electrochemistry, 42, edited by Vayenas, C. G., (Springer, 2008) p89189.CrossRefGoogle Scholar
Gattrell, M., Gupta, N., and Co, A., Journal of Electroanalytical Chemistry 594, 1 (2006).CrossRefGoogle Scholar
Hori, Y., Murata, A., and Takahashi, R., J. Chem. Soc., Faraday Trans. I 85, 2309 (1989).CrossRefGoogle Scholar
Hori, Y., Takahashi, I., Koga, O., and Hoshi, N., J. Phys. Chem. B 106, 15 (2002).CrossRefGoogle Scholar
Li, C. W., and Kanan, M. W., J. Am. Chem. Soc. 134 (17) 7231 (2012).CrossRefGoogle Scholar
Tsai, C.-C., Bugayong, J., and Griffin, G. L., in Materials for Catalysis in Energy, edited by Jiang, D., Kung, H. K., Jin, R., and Rioux, R. M., Materials Research Society Proceedings 1446, (Warrendale, PA 2012) pp5964.Google Scholar
Yano, J. and Yamasaki, S. S, J. Applied Electrochemistry 38 (12) 1721 (2002).CrossRefGoogle Scholar
Frese, Karl W. Jr., J. Electrochem. Soc., 138 (11) 3338 (1991).CrossRefGoogle Scholar
Chang, T.-Y., Liang, R.-M., Wu, P.-W., Chen, J.-Y., and Hsieh, Y.-C., Materials Letters 63, 1001 (2009).CrossRefGoogle Scholar
Le, M., Ren, M., Zhang, Z., Sprunger, P. T., Kurtz, R. L., and Flake, J. C., J. Electrochem. Soc., 158(5), E45 (2011).CrossRefGoogle Scholar
Schouten, K. J. P., Kwon, Y., van der Ham, C.J. M., Qin, Z., and Koper, M. T. M., Chem. Sci. 2, 1902 (2011).CrossRefGoogle Scholar
Montoya, J. H., Peterson, A. A., and Nørskov, J. K., ChemCatChem 5, 737 (2013).CrossRefGoogle Scholar
Kuhl, K. P., Cave, E. R., Abram, D. N., and Jaramillo, T. F., Energy Environ. Sci. 5 (5) 7050 (2012).CrossRefGoogle Scholar