Published online by Cambridge University Press: 09 June 2014
We have studied the electrochemical reduction of CO2 using Cu2O nanoparticles deposited on planar electrodes. Nanoparticles are prepared in aqueous solution by chemical reduction of CuCl2 using ascorbic acid with polyethylene glycol surfactant. The particles are then re-suspended in ethanol with added Nafion binder and brush-coated onto glassy carbon substrates. The CO2 electroreduction activity is measured in KHCO3 electrolyte under flowing CO2 using a two-compartment electrochemical cell. Product formation rates are determined using gas chromatography; major gas phase products include CO, H2, C2H4, and CH4, while liquid phase products include C2H5OH and 1-C3H5OH. The observed product distribution agrees with results obtained previously using similar Cu2O particles deposited on carbon fiber paper supports, as well as Cu2O catalysts prepared by electrodeposition or thermal oxidation. In particular, the catalysts produce a much higher ratio of C2H4 to CH4 than observed using polycrystalline Cu foil. The potential dependence of the formation rates for hydrocarbon and alcohol products is roughly two times greater than for H2 and CO formation. Both XRD and SEM measurements confirm the Cu2O nanoparticles undergo at least partial reduction to Cu metal under CO2 reduction conditions, accompanied by significant surface morphological changes. Thus the kinetic results are consistent with current models that the increased C2H4/CH4 ratio is due to the presence of a more open atomic structure on the freshly reduced Cu surfaces.