Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T01:53:31.691Z Has data issue: false hasContentIssue false

Electrocatalyis for PEFCs: Oxygen Reduction on Nanoparticles and Extended Surfaces

Published online by Cambridge University Press:  25 January 2013

Thomas J. Schmidt
Affiliation:
Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
Annett Rabis
Affiliation:
Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
Bernhard Schwanitz
Affiliation:
Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
Günther G. Scherer
Affiliation:
Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
Get access

Abstract

This work makes an attempt to correlate experimentally observed Tafel slopes from the oxygen reduction reaction in both model rotating disk electrode and polymer electrolyte fuel cell measurements, respectively, with the kinetic description of a coverage dependent current-potential relationship. It is shown that the potential dependent OHad coverage can be used as a descriptor of potential dependent Tafel slopes, pointing to the validity of underlying Temkin-Frumkin adsorption properties in combination with the Butler-Volmer approach.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Rabis, A., Rodriguez, P., and Schmidt, T.J., ACS Catalysis 2, 864 (2012).CrossRefGoogle Scholar
Debe, M.K., in Handbook of Fuel Cells—Fundamentals, Technology and Applications, edited by Lamm, A. and Gasteiger, H. A. Vielstich, W. (John Wiley & Sons, 2003), Vol. 3, pp. 677.Google Scholar
Debe, Mark K., Nature 486 (7401), 43 (2012).CrossRefGoogle Scholar
Schwanitz, B., Rabis, A., Horisberger, M., Scherer, G. G., and Schmidt, T.J., Chimia 66 (3), 110 (2012).CrossRefGoogle Scholar
Subramanian, N. P., Greszler, T. A., Zhang, J., Gu, W., and Makharia, R., Journal of The Electrochemical Society 159 (5), B531 (2012).CrossRefGoogle Scholar
Schwanitz, B., Schulenburg, H., Horisberger, M., Wokaun, A., and Scherer, G. G., Electrocatalysis 2, 35 (2011).CrossRefGoogle Scholar
Damjanovic, A. and Sepa, D. B., Electrochimica Acta 35 (7), 1157 (1990).CrossRefGoogle Scholar
Grgur, B. N., Markovic, N. M., and Ross, P. N. Jr, Can.J.Chem. 75, 1465 (1997).CrossRefGoogle Scholar
Bett, J. and Lundquist, J., Electrochima Acta 18, 343 (1973).CrossRefGoogle Scholar
Paulus, U. A., Schmidt, T. J., Gasteiger, H. A., and Behm, R. J., Journal of Electroanalytical Chemistry 495, 134 (2001).CrossRefGoogle Scholar
Gasteiger, H. A., Kocha, S. S., Sompalli, B., and Wagner, F. T., Appl.Catal.B: Environmental 56, 9 (2005).CrossRefGoogle Scholar
Neyerlin, K. C., Gasteiger, H. A., Mittelstaedt, C. K., Jorne, J., and Gun, W., Journal of the Electrochemical Society 152 (6), A1073 (2005).CrossRefGoogle Scholar
Steel, D. C., Benicewicz, B. C., Xiao, L., and Schmidt, T. J., in Handbook of Fuel Cells-Fundamentals, Technology and Applications, edited by Vielstich, W., Yokokawa, H., and Gasteiger, H. A. (John Wiley & Sons, New York, 2009), pp. 300.Google Scholar
Subramanian, N. P., Greszler, T.A., Zhang, J., Gu, W., and Makharia, R.R, ECS Trans. 41 (1), 985 (2012).Google Scholar
Sepa, D. B., Vojnovic, M. V., Vracar, Lj, and Damjanovic, A., Electrochimica Acta 31 (1), 91 (1986).CrossRefGoogle Scholar
Schmidt, T. J., Stamenkovic, V., Ross, P. N. Jr, and Markovic, N. M., Phys.Chem.Chem.Phys. 5, 400 (2003).CrossRefGoogle Scholar
Mayrhofer, K. J. J., Blizanac, B. B., Arenz, M., Stamenkovic, V., Ross, P. N., and Markovic, N. M., Journal of Physical Chemistry B 109, 14433 (2005).CrossRefGoogle Scholar