Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T14:38:06.107Z Has data issue: false hasContentIssue false

Electrically Modulated Drug Delivery using Nanoporous Electrodes

Published online by Cambridge University Press:  31 January 2011

David B. Robinson
Affiliation:
[email protected], Sandia National Laboratories, PO Box 969 MS 9291, Livermore, California, 94551, United States
Shaun D. Gittard
Affiliation:
[email protected], University of North Carolina, Chapel Hill, North Carolina, United States
C.-A. Max Wu
Affiliation:
[email protected], Sandia National Laboratories, Livermore, California, United States
Cindy M. Ha
Affiliation:
[email protected], University of North Carolina, Chapel Hill, North Carolina, United States
Roger J. Narayan
Affiliation:
[email protected], University of North Carolina, Biomedical Engineering, Chapel Hill, North Carolina, 27599, United States
Get access

Abstract

Nanoporous electrodes, such as those made from carbon or gold, can capture and release ionic analytes at concentrations near 1 mole per liter of pore volume through capacitive charging or electrochemically reversible adsorption. In vitro studies suggest that this phenomenon can be the basis for a noninvasive, precise, and programmable drug delivery method. It would eliminate the need for bulk fluid delivery to target tissue and require only a thin electrical connection, minimizing pain and tissue disruption. We have designed effective gold electrode assemblies and observed the depletion and release phenomena using electrochemical methods and charged dyes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Brown, M. B. Martin, G. P. Jones, S. A. and Akomeah, F. K. Drug Delivery 13, 175 (2006).Google Scholar
2 Pruss-Uston, A., Rapiti, E. and Hutin, Y. in WHO Environmental Burden of Disease Series, World Health Organization, (2003).Google Scholar
3 Nir, Y. Paz, A. Sabo, E. and Potasman, I. American Journal of Tropical Medicine and Hygiene 68, 341 (2003).Google Scholar
4 Jacobson, R. M. Swan, A. Adegbenro, A. Ludington, S. L. Wollan, P. C. Poland, G. A. and Res, G. Vaccine, Vaccine 19, 2418 (2001).Google Scholar
5 Bartell, J. C. Roberts, K. A. Schutte, N. J. ShermanJ, K. C. Muller, D. and Hayney, M. S. Clinical Journal of Pain 24, 260 (2008).Google Scholar
6 Brazeau, G. A. and Fung, H. L. Pharmaceutical Research 6, 167 (1989).Google Scholar
7 Jorgensen, J. T. Romsing, J. Rasmussen, M. MollerSonnergaard, J. Vang, L. and Musaeus, L. Annals of Pharmacotherapy 30, 729 (1996).Google Scholar
8 Morris, R. McKay, W. and Mushlin, P. Anesthesia and Analgesia 66, 1180 (1987).Google Scholar
9 Chan, H. Journal of Advanced Nursing 35, 882 (2001).Google Scholar
10 Laursen, T. Hansen, B. and Fisker, S. Basic & Clinical Pharmacology & Toxicology 98, 218 (2006).Google Scholar
11 Cook, I. F. and Murtagh, J. Medical Journal of Australia 183, 60 (2005).Google Scholar
12 Elias, P. M. in Current Problems in Dermatology, edited by Fritsch, P. G. and Hintner, H. (S. Karger AG, Basel, Switzerland, 1989) pp. 10.Google Scholar
13 Prausnitz, M. R. Mitragotri, S. and Langer, R. Nature Reviews Drug Discovery 3, 115 (2004).Google Scholar
14 Chabri, F. Bouris, K. Jones, T. Barrow, D. Hann, A. Allender, C. Brain, K. and Birchall, J. British Journal of Dermatology 150, 869 (2004).Google Scholar
15 Kalia, Y. N. Naik, A. Garrison, J. and Guy, R. H. Advanced Drug Delivery Reviews 56, 619 (2004).Google Scholar
16 Pikal, M. J. Advanced Drug Delivery Reviews 46, 281 (2001).Google Scholar
17 Gill, H. S. Denson, D. D. Burris, B. A. and Prausnitz, M. R. Clinical Journal of Pain 24, 585 (2008).Google Scholar
18 Gill, H. S. and Prausnitz, M. R. Journal of Controlled Release 117, 227 (2007).Google Scholar
19 Park, J. H. Allen, M. G. and Prausnitz, M. R. Pharmaceutical Research 23, 1008 (2006).Google Scholar
20 Miyano, T. Tobinaga, Y. Kanno, T. Matsuzaki, Y. Takeda, H. Wakui, M. and Hanada, K. Biomedical Microdevices 7, 185 (2005).Google Scholar
21 Lee, J. W. Park, J. H. and Prausnitz, M. R. Biomaterials 29, 2113 (2008).Google Scholar
22 Wang, P. M. Cornwell, M. Hill, J. and Prausnitz, M. R. Journal of Investigative Dermatology 126, 1080 (2006).Google Scholar
23 Suzuki, H. Tokuda, T. and Kobayashi, K. Sensors and Actuators B-Chemical 83, 53 (2002).Google Scholar
24 Zahn, J. D. Deshmukh, A. Pisano, A. P. and Liepmann, D. Biomedical Microdevices 6, 183 (2004).Google Scholar
25 Miller, L. L. Smith, G. A. Chang, A.C. and Zhou, Q.X. Journal of Controlled Release 6, 293 (1987).Google Scholar
26 Luo, X. L. and Cui, X. T. Electrochemistry Communications 11, 402 (2009).Google Scholar
27 Cosnier, S. Innocent, C. Moutet, J.C. and Tennah, F. Journal of Electroanalytical Chemistry 233, 241 (1994).Google Scholar
28 Gittard, S. D. Pierson, B. E. Ha, C. M. Wu, C. M. Narayan, R. J. Robinson, D. B. Biotechnology Journal in press (2010).Google Scholar
29 Attard, G. S. Bartlett, P. N. Coleman, N. R. B. Elliott, J. M. Owen, J. R. and Wang, J. H. Science 278, 838 (1997).Google Scholar
30 Robinson, D. B. Fares, S. J. Ong, M. D. Arslan, I. Langham, M. E. Tran, K. L. and Clift, W. M. International Journal of Hydrogen Energy 34, 5585 (2009).Google Scholar
31 Biener, J. Hodge, A. M. Hamza, A. V. Hsiung, L. M. and Satcher, J. H. Journal of Applied Physics 97 (2005).Google Scholar
32 Forty, A. J. and Durkin, P. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties 42, 295 (1980).Google Scholar
33 Vix-Guterl, C., Frackowiak, E. Jurewicz, K. Friebe, M. Parmentier, J. and Beguin, F. Carbon 43, 1293 (2005).Google Scholar
34 Terres, E. Panella, B. Hayashi, T. Kim, Y. A. Endo, M. Dominguez, J. M. Hirscher, M. Terrones, H. and Terrones, M. Chemical Physics Letters 403, 363 (2005).Google Scholar
35 Simon, P. and Gogotsi, Y. Nature Materials 7, 845 (2008).Google Scholar
36 Oren, Y. Desalination 228, 10 (2008).Google Scholar
37 Farmer, J. C. Fix, D. V. Mack, G. V. Pekala, R. W. and Poco, J. F. Journal of the Electrochemical Society 143, 159 (1996).Google Scholar
38 Deinhammer, R. S. Ting, E. Y. and Porter, M. D. Journal of Electroanalytical Chemistry 362, 295 (1993).Google Scholar
39 Blankespoor, R. L. and Miller, L. L. Journal of the Chemical Society-Chemical Communications 90 (1985).Google Scholar
40 Wang, J. Jiang, M. Fortes, A. and Mukherjee, B. Analytica Chimica Acta 402, 7 (1999).Google Scholar
41 Oren, Y. and Soffer, A. Journal of Applied Electrochemistry 13, 473 (1983).Google Scholar
42 Grahame, D. C. Chemical Reviews 41, 441 (1947).Google Scholar
43 Pell, W. G. and Conway, B. E. Journal of Electroanalytical Chemistry 500, 121 (2001).Google Scholar
44 Barclay, D. J. Journal of Electroanalytical Chemistry 19, 318 (1968).Google Scholar
45 McMillan, J. A. Feigin, R. D. DeAngelis, C. and Jones, M. D. Oski's pediatrics: principles and practice, Lippincott Williams & Wilkins, Philadelphia, 2006.Google Scholar
46 Grahame, D. C. Journal of the American Chemical Society 4201, 4210 (1958).Google Scholar
47 Han, B. Li, Z. H. and Wandlowski, T. Analytical and Bioanalytical Chemistry 388, 121 (2007).Google Scholar