Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:57:39.570Z Has data issue: false hasContentIssue false

The Electrical Properties of Silicon Oxide Deposited By Remote Plasma Enhanced Chemical Vapor Deposition (Rpecvd).

Published online by Cambridge University Press:  22 February 2011

Sang S. Kim
Affiliation:
North Carolina State University, Dept. of Physics, Raleigh, NC 27695-8202
D. V. Tsu
Affiliation:
North Carolina State University, Dept. of Physics, Raleigh, NC 27695-8202
G. Lucovsky
Affiliation:
North Carolina State University, Dept. of Physics, Raleigh, NC 27695-8202
Get access

Abstract

We have constructed an Ultra High Vacuum (UHV) multichamber system and have deposited ‘gate quality’ silicon dioxide by the remote plasma enhanced chemical vapor deposition (Remote PECVD) process at low substrate temperatures (Ts ≤400 °C). Native oxides and other surface contaminants are removed under ultra high vacuum (UHV) conditions and the character of the semiconductor surface is determined prior to film deposition using in-situ Reflection High Energy Electron Defraction (RHEED). Measurents made on MOS structures of capacitance-voltage, current-voltage, field break-down, hysteresis, and mobile ion drift indicate that these films are ‘comparable’ to thermally (Ts >1100 °C) grown oxides. The structural properties of the films arg studied by ir spectroscopy and ellipsometry.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Adams, A. C., Solide State Technol. 26(4), 135 (1983).Google Scholar
2. Chao, S. S., Lucovsky, G., Lin, S. Y., Wong, C. K., Tyler, J.E., Tagaki, Y., Pai, P. G., and Mantini, M. J., J. Vac. Sci.Tecnol. A 4, 1574 (1986).CrossRefGoogle Scholar
3. Lenzlinger, M. and Snow, E. H., J. Appl. Phys. 40, 278 (1969).Google Scholar
4. van de Ven, Evert P. G. T., Solid State Tecnol. 24(4), 167 (1981).Google Scholar
5. Hollahan, J. R., J. Electrochem. Soc. 126, 930 (1979).Google Scholar
6. Gorowitz, B., Gorczyca, T. B., and Saia, R. J., Solid State Tecnol. 28(6), 197 (1985).Google Scholar
7. Batey, J. and Tierney, E., J.Appl. Phys. 60, 3136 (1986).Google Scholar
8. Rudder, R.A., Fountain, G. G. and Lindorme, P., Appl. Phys. Lett. (submitted for publication).Google Scholar
9. Kim, Sang S., Tsu, D. V., and Lucovsky, G., J. Vac. Sci. Tecnol. in press.Google Scholar
10. Ignatiev, A., Jona, F., Debe, M., Johnson, D. E., White, S. J., and Woodruff, D.P., J. Phys. C 10, 1109 (1977).CrossRefGoogle Scholar
11. Hernández-Calderón, I. and Höchst, H., Phys. Rev. B 27, 4961 (1983).Google Scholar
12. Lucovsky, G., Richard, P. D., Tsu, D. V., Lin, S. Y., and Markunas, R. J., J. Vac. Sci. Tecnol. A 4, 681 (1986).CrossRefGoogle Scholar
13. Tsu, D. V., Lucovsky, G., and Mantini, M. J., Phys. Rev. B 33, 7069 (1986).Google Scholar