Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T01:54:54.874Z Has data issue: false hasContentIssue false

Electrical Properties of Silicon Nitride Thin Films Fabricated by ECR PECVD at Room Temperature

Published online by Cambridge University Press:  22 February 2011

Yoo-Chan Jeon
Affiliation:
Dept of Metallurgical Eng., Seoul National University, San 56–1 Shillim-dong Kwanak-ku, Seoul, 151–742, KOREA
Hoyoung Lee
Affiliation:
Dept of Metallurgical Eng., Seoul National University, San 56–1 Shillim-dong Kwanak-ku, Seoul, 151–742, KOREA
Seung-Ki Joo
Affiliation:
Dept of Metallurgical Eng., Seoul National University, San 56–1 Shillim-dong Kwanak-ku, Seoul, 151–742, KOREA
Get access

Abstract

Silicon nitride thin films were deposited on single crystalline silicon substrates at room temperature by ECR PECVD with SiH4 and N2 as source gases and the electrical properties were analyzed. The dominant conduction mechanism in a high field was Poole-Frenkel emission. A ledge in I-V curve was observed in the first voltage ramp and it was found to originate from the field reduction at the injecting electrode due to the charge trapped in deep traps in the film. It also turned out that the ledge is a characteristic of monopolar conduction. A new interpretation of the current at low field — tunneling into trap states — was proposed and the current variations according to the field and temperature could be well explained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Huang, T. -Y., Coleman, D. J. and Paterson, J. L., J. Electrochem. Soc., 132, 1406 (1985)Google Scholar
2. Moslehi, M. M., Fu, C. Y., Sigmon, T. W. and Saraswat, FCC. J. Appl Phys., 58, 2416 (1985)Google Scholar
3. Paloura, E., Nauka, K., Lagowski, J. and Gatos, H. C., Appl. Phys. Lett., 49, 97 (1986)Google Scholar
4. Matsmura, H., J. Appl. Phys., 66, 3612 (1989)Google Scholar
5. Ahn, B. -C., Shimizu, K., Satoh, T., Kanoh, H., Sugiura, O. and Matsumura, M., Jpn. J. Appl. Phys., 30B, 3695 (1991)Google Scholar
6. Nickel, N., Funs, W. and Mell, H., J. Noncryst. Solids, 137 & 138, 1221 (1991)Google Scholar
7. Boehm, M., Salamon, S. and Kiss, Z., Mat. Res. Soc. Symp. Proc., 118, 243 (1988)Google Scholar
8. Richard, P. D., Tsu, D. V., Lucovsky, G., and Lin, S. Y., J. Noncryst. Solids, 77 & 78, 25 (1985)Google Scholar
9. Lucovsky, G., Richard, P. D., Tsu, D. V., Lin, S. Y., and Markunas, R. J., J. Vac. Sci, Technol., A4, 681 (1986)Google Scholar
10. Richard, P. D., Markunas, R. J., Lucovsky, G., Fountain, G. G., Mansour, A. N. and Tsu, D. V., J. Vac. Sci. Technol., A3, 867 (1985)Google Scholar
11. Matsumura, H., Jpn. J. Appl. Phys., 28, 2157 (1989)Google Scholar
12. Hirao, T., Setsune, K., Kitagawa, M., Manabe, Y., Wasa, K. and Kohiki, S., Jpn. J. Appl Phys., 26, L544 (1987)Google Scholar
13. Hirao, T., Setsune, K., Kitagawa, M., Kamada, T., Ohmura, T., Wasa, K. and Izumi, T., Jpn. J. Appl Phys., 27, 30 (1988)Google Scholar
14. Manabe, Y. and Mitsuyu, T., J. Appl. Phys., 66, 2475 (1989)Google Scholar
15. Jeon, Y. -C., Lee, H. -Y. and Joo, S. -K., J. Electron. Mat., 21, 1119 (1992)Google Scholar
16. Sze, S. M., Physics of semiconductor devices, 2nd Ed., John Wiley & Sons, New York (1981)Google Scholar
17. O'Dwyer, J. J., The thoery of electrical conduction and breakdown in solid dielectrics. Oxford University Press, London (1973)Google Scholar
18. Lowe, A. J., Powell, M. J. and Elliott, S. R., J. Appl Phys., 59, 1251 (1986)Google Scholar
19. Sinha, A. K. and Smith, T. E., J. Appl Phys., 49, 2756 (1978)Google Scholar