Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T17:49:16.433Z Has data issue: false hasContentIssue false

Electrical Characterization of In Schottky Contacts to Epitaxial n-In0.46Ga0.54P Grown on n+-GaAs by Mocvd

Published online by Cambridge University Press:  03 September 2012

N. Marcano
Affiliation:
Universidad de Oriente, Departamento de Fisica, Laboratorio de Semiconductores, Apartado 188, Cumaná 6101, Sucre, Venezuela.
A. Singh
Affiliation:
Universidad de Oriente, Departamento de Fisica, Laboratorio de Semiconductores, Apartado 188, Cumaná 6101, Sucre, Venezuela.
Get access

Abstract

In/n-In0.46Ga0.54P Schottky diode was fabricated by thermal evaporation of In on chemically etched surface of In0.45Ga0.54P:Si epitaxial layer grown on highly doped n type GaAs. The In metal formed a high quality rectifying contact to In0.46Ga0.54P:Si with a rectification ratio of 500. The direct current-voltage/temperature (I-V/T) characteristics were non-ideal with the values of the ideality factor (n) between 1.26-1.78 for 400>T>260 K. The forward I-V data strongly indicated that the current was controlled by the generation-recombination (GR) and thermionic emission (TE) mechanisms for temperature in the range 260-400 K. From the temperature variation of the TE reverse saturation current, the values of (0.75±0.05)V and the (4.5±0.5)×10-5 Acm-2K-2 for the zero bias zero temperature barrier height (φoo) and modified effective Richardson constant were obtained. The 1 MHz capacitance-voltage (C-V) data for 260 K < T < 400 K was analyzed in terms of the C-2-V relation including the effect of interface layer to obtain more realistic values of the barrier height (φbo). The temperature dependence of φbo was described the relation φbo =(0.86±10.03) - (8.4±0.7)×l0-4T. The values of φoo, obtained by the I-V and C-V techniques agreed well.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Loualiche, S., Ginudi, A. Corre, Le, Lecroisnier, D., Vaudry, C., Henry, L. and Guillemot, C., EEEE Electron Device Letters, EDL–11, 153 (1990).Google Scholar
2 Chan, Y. J., Pavlidis, D., Razeghi, M., and Omnes, F., IEEE Trans. Electron Devices ED–37, 2141 (1990).Google Scholar
3 Ishikawa, M., Ohba, Y., Sugawara, H., Yamamoto, M., and Nakanisi, T., Appl. Phys. Lett. 48, 207 (1986).Google Scholar
4 Kobayashi, T., Taira, K., Nakamura, F. and Kawai, , J. Appl. Phys. 65, 4898 (1989).Google Scholar
5 Chang, E. Y., Lai, Y.-L., Lin, K.-C.,and Chang, C.-Y., J. Appl. Phys 74, 5622 (1993).Google Scholar
6 Kwon, S. D., Kwon, Ho Ki, Choe, B.-D, Lim, H. and Lee, J. Y., J. Appl. Phys. 78, 2482 (1995).Google Scholar
7 Sze, S. M., Physics of Semiconductor Devices, 2nd Edn. (Wiley, New York, 1981) Chap. 5.Google Scholar
8 Singh, A. and Marcano, N., Mater. Res. Soc. Symp. Proc. 378, 829 (1995).Google Scholar
9 Singh, A., and Velázques, L., in Surf. Sci. Vac, and their Appl., Edited by Hernández-Calderón, I., and Asomoza, R. (AIP Conf Proc. 378, AIP Press, New York, 1996) p. 387.Google Scholar
10 Hattori, K., Yuito, M. and Amakusa, T., Phys. Status Solidi A73, 157 (1982).Google Scholar
11 Rhoderick, E. H and Williams, R. H. Metal-Semiconductor Contacts, 2nd Edn. Clarendon Press, Oxford (1988).Google Scholar
12 Singh, A., Reinhardt, K. C. and Anderson, W. A., J. Appl. Phys 68, 3475 (1990).Google Scholar
13 Marcano, N., and Singh, A., (To be Published).Google Scholar