Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-20T00:24:52.541Z Has data issue: false hasContentIssue false

Electrical Characterization of As and [As+Si] doped GaN Grown by Metalorganic Chemical Vapor Deposition

Published online by Cambridge University Press:  01 February 2011

M. Ahoujja
Affiliation:
Department of Physics, University of Dayton, Dayton, OH, USA
S. Elhamri
Affiliation:
Department of Physics, University of Dayton, Dayton, OH, USA
R. Berney
Affiliation:
Department of Physics, University of Dayton, Dayton, OH, USA
Y.K. Yeo
Affiliation:
Air Force Institute of Technology, Wright-Patterson AFB, OH, USA
R. L. Hengehold
Affiliation:
Air Force Institute of Technology, Wright-Patterson AFB, OH, USA
Get access

Abstract

Electrical properties of As, Si, and [As+Si] doped GaN films grown on sapphire substrates by low temperature metalorganic chemical vapor deposition have been investigated using temperature dependent Hall-effect and deep level transient spectroscopy measurements. The Hall measurements from the GaN layers show that the concentration decreases with arsine flow (4, 40, and 400 sccm) at all temperatures. The carrier concentration of the Si-doped GaN, on the other hand, increases with the incorporation of arsine flow. This behavior is attributed to the formation of AsGa antisites which act as double donors. A deep level at around 0.82 eV below the conduction in the band gap of As doped GaN is measured by DLTS and is tentatively assigned to arsenic on gallium antisite.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bellaiche, L., Wei, S.–H., and Zunger, A., Phys. Rev B 54, 17568 (1996).Google Scholar
2. Bellaiche, L., Wei, S.–H., and Zunger, A., Appl. Phys. Lett. 70, 3558 (1997).Google Scholar
3. Bellaiche, L., Wei, S.–H., and Zunger, A., Phys. Rev. B 56, 10233 (1997).Google Scholar
4. Van de Walle, Chris G. and Neugebauer, J., Appl. Phys. Lett. 76, 1009 (2000).Google Scholar
5. Guido, L. J., Mitev, P., Gherasimova, M., and Gaffey, B., Appl. Phys. Lett. 72, 2005 (1998).Google Scholar
6. Li, X., Kim, S., Reuter, E. E., Bishop, S. G., and Coleman, J. J., Appl. Phys. Lett. 72, 1990 (1998).Google Scholar
7. Novikov, S. V., Winser, A. J., Harrison, I., Davis, C. S., and Foxon, C. T., Semicond. Sci. Technol. 16, 103106 (2001).Google Scholar
8. Bell, A., Ponce, F. A., Novikov, S. V., Foxon, C. T., and Harrison, I., Appl. Phys. Lett. 79, 3239 (2001).Google Scholar
9. Lee, L., Lee, W. C., Chung, H. M., Lee, M. C., Chen, W. H., and Chen, W. K., and Lee, H. Y., Appl. Phys. Lett. 81, 1812 (2002).Google Scholar
10. Huang, H. Y., Lin, W. C., Lee, W. H., Shu, C. K., Liao, K. C., Chen, W. K., Lee, M. C., Chen, W. H., and Lee, Y. Y., Appl. Phys. Lett. 77, 2819 (2002).Google Scholar