Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T13:48:07.536Z Has data issue: false hasContentIssue false

Electrical and structural properties of ultrathin polycrystalline and epitaxial TiN films grown by reactive dc magnetron sputtering

Published online by Cambridge University Press:  31 January 2011

Fridrik Magnus
Affiliation:
[email protected], University of Iceland, Science Institute, Reykjavik, Iceland
Arni Sigurdur Ingason
Affiliation:
[email protected], University of Iceland, Science Institute, Reykjavik, Iceland
Sveinn Olafsson
Affiliation:
[email protected], University of Iceland, Science Institute, Reykjavik, Iceland
Jon Tomas Gudmundsson
Affiliation:
[email protected]@raunvis.hi.is, Unviersity of Iceland, Science Institute, Dunhaga 3, Reykjavik, IS-107, Iceland, (354)-5254946, (354)-552-8911
Get access

Abstract

Ultrathin TiN films were grown by reactive dc magnetron sputtering on amorphous SiO2 substrates and single-crystalline MgO substrates at 600°C. The resistance of the films was monitored in-situ during growth to determine the coalescence and continuity thicknesses. TiN films grown on SiO2 are polycrystalline and have coalescence and continuity thicknesses of 8 Å and 19 Å, respectively. TiN films grow epitaxially on the MgO substrates and the coalescence thickness is 2 Å and the thickness where the film becomes continuous cannot be resolved from the coalescence thickness. X-ray reflection measurements indicate a significantly higher density and lower roughness of the epitaxial TiN films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Plummer, J. D. Deal, M. D. and Griffin, P. B. Silicon VLSI Technology: Fundamentals, Practice and Modeling. (Prentice Hall, New Jersey, 2000).Google Scholar
2 Chau, R. Datta, S. Doczy, M. Doyle, B. Kavalieros, J. and Metz, M. IEEE Electron Device Lett. 25, 408 (2004); J. Westlinder, T. Schram, L. Pantisano, E. Cartier, A. Kerber, G. S. Lujan, J. Olsson, and G. Groeseneken IEEE Electron Device Lett. 24, 550 (2003).Google Scholar
3 Yuasa, S. J. Phys. Soc. Jpn. 77, 031001 (2008).Google Scholar
4 Yan, L. Lopez, C. M. Shrestha, R. P. Irene, E. A. Suvorova, A. A. and Saunders, M. Appl. Phys. Lett. 88, 142901 (2006); A. Posadas, F. J. Walker, C. H. Ahn, T. L. Goodrich, Z. Cai, and K. S. Ziemer, Appl. Phys. Lett. 92, 233511 (2008).Google Scholar
5 Arnalds, U. B. Agustsson, J. S. Ingason, A. S. Eriksson, A. K. Gylfason, K. B. Gudmundsson, J. T., and Olafsson, S. Rev. Sci. Instrum. 78, 103901 (2007).Google Scholar
6 Barnat, E. V. Nagakura, D. and Lu, T. M. Rev. Sci. Instrum. 74, 3385 (2003).Google Scholar
7 Burgmann, F. A. Lim, S. H. N. McCulloch, D. G. Gan, B. K. Davies, K. E. McKenzie, D. R. and Bilek, M. M. M., Thin Solid Films 474, 341 (2005); A. I. Maaroof and B. L. Evans, J. Appl. Phys. 76, 1047 (1994).Google Scholar
8 Rycroft, I. M. and Evans, B. L. Thin Solid Films 291, 283 (1996).Google Scholar
9 Bauer, E. and Vandermerwe, J. H. Phys. Rev. B 33, 3657 (1986).Google Scholar
10 Ingason, A. S. Magnus, F. Agustsson, J. S. Olafsson, S. and Gudmundsson, J. T. Thin Solid Films (submitted 2009).Google Scholar
11 Linker, G. Smithey, R. Geerk, J. Ratzel, F. Schneider, R. and Zaitsev, A. Thin Solid Films 471, 320 (2005).Google Scholar
12 Mahieu, S. and Depla, D. J. Phys. D 42, 053002 (2009).Google Scholar
13 Birkholz, M, Thin film analysis by X-ray scattering. (Wiley-VCH, Weinheim, 2006).Google Scholar
14 Parratt, L. G. Phys. Rev. 95, 359 (1954).Google Scholar
15 Holleck, H. J. Vac. Sci. Technol. A 4, 2661 (1986).Google Scholar