Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T23:55:05.053Z Has data issue: false hasContentIssue false

Electrical and Physical Characterization of Ultrathin Silicon Oxynitride Gate Dielectric Films Formed by the Jet Vapor Deposition Technique

Published online by Cambridge University Press:  10 February 2011

A. Karamcheti
Affiliation:
SEMATECH, Inc., Austin, TX 78741, [email protected]
V.H.C. Watt
Affiliation:
SEMATECH, Inc., Austin, TX 78741, [email protected]
T.Y. Luo
Affiliation:
SEMATECH, Inc., Austin, TX 78741, [email protected]
D. Brady
Affiliation:
SEMATECH, Inc., Austin, TX 78741, [email protected]
F. Shaapur
Affiliation:
SEMATECH, Inc., Austin, TX 78741, [email protected]
L. Vishnubhotla
Affiliation:
SEMATECH, Inc., Austin, TX 78741, [email protected]
G. Gale
Affiliation:
SEMATECH, Inc., Austin, TX 78741, [email protected]
H.R. Huff
Affiliation:
SEMATECH, Inc., Austin, TX 78741, [email protected]
M.D. Jackson
Affiliation:
SEMATECH, Inc., Austin, TX 78741, [email protected]
K. Torres
Affiliation:
SEMATECH, Inc., Austin, TX 78741, [email protected]
A. Diebold
Affiliation:
SEMATECH, Inc., Austin, TX 78741, [email protected]
J. Guan
Affiliation:
SEMATECH, Inc., Austin, TX 78741, [email protected]
M.C. Gilmer
Affiliation:
SEMATECH, Inc., Austin, TX 78741, [email protected]
G.A. Brown
Affiliation:
SEMATECH, Inc., Austin, TX 78741, [email protected]
G. Bersuker
Affiliation:
SEMATECH, Inc., Austin, TX 78741, [email protected]
P. Zeitzoff
Affiliation:
SEMATECH, Inc., Austin, TX 78741, [email protected]
T. Tamagawa
Affiliation:
Jet Process Corporation, New Haven, CT 06511
X. Guo
Affiliation:
Dept. Of Electrical Engineering, Yale University, New Haven, CT 06520
X.W. Wang
Affiliation:
Dept. Of Electrical Engineering, Yale University, New Haven, CT 06520
T.P. Ma
Affiliation:
Dept. Of Electrical Engineering, Yale University, New Haven, CT 06520
Get access

Abstract

This paper describes the electrical and physical characteristics of ultrathin Jet Vapor Deposited (JVD) Silicon Oxynitride films. Capacitance-Voltage measurements indicate an equivalent oxide thickness (EOT) of less than 2 nm, taking into account the quantum-mechanical correction. These films have leakage currents almost two orders of magnitude lower than thermal oxide of the same equivalent thickness. Measurements on NMOSFETs with 0.15 μm of channel length demonstrate excellent electrical properties, including high drive currents (∼0.5 mA/μm @ Vd=Vg–Vt=l.5 V), low sub-threshold swings (∼72 mV/decade), and high transconductance (∼0.36 mS/μm @ Vd=1.5 V). These films were also analyzed using a variety of physicochemical methods, including Total X-ray Fluorescence (TXRF), Atomic Force Microscopy (AFM), Nuclear Reaction Analysis (NRA), Low Energy (500 eV) Secondary Ion Mass Spectrometry (SIMS), and Transmission Electron Microscopy (TEM). Surface metal concentrations of less than 1011 atoms/cm2 were measured from the TXRF analysis. The microroughness values for these films varied between 0.15 – 0.17 nm as measured by AFM. Low energy (500 eV) SIMS and NRA indicate high [N] near the top as well as throughout the bulk of the film, and a significant amount of [O] near the top of the film. High Resolution TEM pictures show a very uniform film with a physical thickness of 2.8 ± 0.1 nM, which yields an effective dielectric constant of 5.5, consistent with these types of oxynitride films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Schuegraf, K.F., Park, D. and Hu, C., IEDM Tech. Dig., 609 (1994).Google Scholar
2.Taur, Y. and Nowak, E.J., IEDM Tech. Dig., 215 (1997).Google Scholar
3.Lo, S.-H., Buchanan, D.A., Taur, Y. and Wang, W., IEEE Electron Device Lett. 18, 209 (1997).Google Scholar
4.The National Technology Roadmap for Semiconductors, (SIA, Santa Clara, CA, 1997), p.71.Google Scholar
5.Parker, C., Lucovsky, G. and Hauser, J., IEEE Electron Device Lett. 19, 106 (1998).Google Scholar
6.Lucovsky, G., Niimi, H., Wu, Y., Parker, C.R. and Hauser, J.R., J. Vac. Sci. Technol. A16, 1721 (1998).Google Scholar
7.Song, S.C., Luan, H.F., Chen, Y.Y., Gardner, M., Fulford, J., Allen, M. and Kwong, D.L., IEDM Tech. Dig., 373 (1998).Google Scholar
8.Song, S.C., Lee, C.H., Luan, H.F., Kwong, D.L., Gardner, M., Fulford, J., Allen, M., Bloom, J. and Evans, R. in Ultrathin Si02 and High-K Materials for ULSI Gate Dielectrics, edited by Huff, H.R., Richter, C.A., Green, M.L., Lucovsky, G., and Hattori, T. (Mat. Res. Soc. Symp. Proc. 567, Warrendale, PA, 1999) pp. 6570.Google Scholar
9.Hattangady, S.V., Grider, D.T., Kraft, R., Shiau, W-T., Douglas, M., Nicollian, P., Rodder, M., Brown, G.A., Chatterjee, A., Hu, J., Aur, S., Tsai, H.-L., Chapman, R.A., Eklund, R.H., Chen, I-C. and Pas, M.F. in Microelectronic Device Technology I1, SPIE Proceedings Series V. 3506, Bellingham, WA, 1998, p. 30.Google Scholar
10.Wang, X.W., Shi, Y., Ma, T.P., Cui, G.J., Tamagawa, T., Golz, J., Halpern, B. and Schmitt, J., 1995 Symp. VLSI Technol. Dig. Tech. Papers, 109 (1995).Google Scholar
11.Ma, T. P., IEEE Trans. Electron Dev. 45, 680 (1998).Google Scholar
12.Guo, X. and Ma, T.P., IEEE Electron Device Lett. 19, 207 (1998).Google Scholar
13.Lo, S.-H., Buchanan, D.A. and Taur, Y., IBM J. Res. Develop. 43, 327 (1999).Google Scholar
14.Stathis, J.H. and DiMaria, D.J., IEDM Tech. Dig., 167 (1998).Google Scholar
15.Wolf, S., Silicon Processing for the VLSI Era, Volume 3 – The Submicron MOSFET, 1st ed. (Lattice Press, Sunset Beach, CA, 1995), pp. 196201.Google Scholar