Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T18:51:12.318Z Has data issue: false hasContentIssue false

Electrical and Optical Properties of Titanium, Vanadium, Molybdenum, and Tungsten Related Defects in Silicon

Published online by Cambridge University Press:  03 September 2012

K. Schmalz
Affiliation:
Institute of Semiconductor Physics, POB 409, 0–1200 Frankfurt (Oder), Federal Republic of Germany
H. G. Grimmeiss
Affiliation:
Institute of Semiconductor Physics, POB 409, 0–1200 Frankfurt (Oder), Federal Republic of Germany
H. Pettersspn
Affiliation:
Department of Solid State Physics, University of Lund, Box 118, S-22100 Lund, Sweden
L. Tilly
Affiliation:
Department of Solid State Physics, University of Lund, Box 118, S-22100 Lund, Sweden
Get access

Abstract

Recent studies of the deep transition-metal centers Ti, V, Mo and W in silicon are discussed, which have been investigated using junction-space charge techniques. The changes in the Gibbs free energy, enthalpy, and entropy due to electron or hole excitation of these transition metal related levels are presented. The good agreement of the Gibbs free energies with the optical threshold energies of the corresponding photoionization cross sections suggests negligible lattice relaxation. For the Ti-doped samples three energy levels at Ec-0.065 eV, Ec-0.295 eV and Ev+0.255 eV at 80 k were observed. For Mo and W the energy levels are located at Ev+0.298 eV and Ev+0.379 eV, respectively, at 80 K. Three energy levels of the V-related centers exist at Ec-0.207 eV, Ec-0.483 eV and Ev+0.356 eV at 0 K. A structure in the low-energy part of the spectral distribution of the level Ec-0.483 eV is assumed to be due to excited states and shown to be in good agreement with effective-mass theory. Previous assignments of the energy levels should be reconsidered.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kleverman, M., Olajos, J., Grossmann, G., and Grimmeiss, H. G., Mat. Res. Soc. Proc. Vol. 104, 141 (1988);CrossRefGoogle Scholar
Kleverman, M., Thilderkvist, A., Grossmann, G., and Grimmeiss, H. G., Materials Science Forum. Vols. 83–87, 125 (1992)Google Scholar
[2] Beeler, F., Anderson, O. K., and Scheffler, M., Phys. Rev. B41, 1603 (1990)Google Scholar
[3] Beeler, F. and Scheffler, M., Materials Science Forum, Vols. 38–41, 257 (1989)Google Scholar
[4] van Wezep, D. A., van Kemp, R., Sieverts, E. G., and Ammerlaan, C. A. J., Phys. Rev. E22, 7129 (1985)Google Scholar
[5] Ludwig, G. W. and Woodbury, H. H. in Solid State Physics, ed. by Ehrenreich, H., Seitz, F., and Turbbull, D. (Academic, New York, 1962), Vol. 13, p. 223 Google Scholar
[6] Tilly, L., Grimmeiss, H. G., Pettersson, H., Schmalz, K., Tittelbach, K., and Kerkow, H., Phys. Rev. B42, 9171 (1991)Google Scholar
[7] Tilly, L., Grimmeiss, H. G., Pettersson, H., Schmalz, K., Tittelbach, K., and Kerkow, H., Phys. Rev. B44, 12809 (1991)Google Scholar
[8] Pettersson, H., Grimmeiss, H. G., Tilly, L., Schmalz, K., Tittelbach, K., and Kerkow, H., Semicond. Sci. Technol. 6, 237 (1991)Google Scholar
[9] Grimmeiss, H. G., Ann. Rev. Mater. Sci., 7, 341 (1977)Google Scholar
[10] Engström, O. and Alm, A., Solid-State Electron. 21, 1571 (1978)Google Scholar
[11] Almbladh, C. -O. and Rees, G. J., J. Phys. C 14, 4575 (1981)CrossRefGoogle Scholar
[12] Wang, Alex C. and Sah, C. T., J. Appl. Phys. 55, 1021 (1984)CrossRefGoogle Scholar
[13] Graff, K. and Pieper, H., in Semiconductor Silicon 1981, ed. by Huff, H. R., Kriegler, R. J., and Takeishi, Y. (The Electrochem. Soc. Pennington, NJ, 1981), p. 331 Google Scholar
[14] Ransom, C. M. and Iyer, S. S., Mater. Res. Soc. Symp., Proc. 7, 197 (1986)CrossRefGoogle Scholar
[15] Grimmeiss, H. G., Ledebo, L. A., Ovren, C., and Morgan, T. N., in Prac. 12th Intern. Conf. Phys. Semicond., ed. by Pilkuhn, M. H. (Teubner, Stuttgart, 1974)Google Scholar
[16] Grimmeiss, H. G. and Skarstam, B., Phys. Rev. B23, 1947 (1981)Google Scholar
[17] Lemke, H., Phys. Status Solidi A64, 549 (1981)CrossRefGoogle Scholar
[18] Daliev, Kh. S., Lebedev, A. A., Sultánov, N. A., and Ecke, W., Fiz. Tekh. Poluprovodn. 19, 338 (1985) [Sov. Phys. Semicond. 19, 211 (1985)]Google Scholar
[19] Kleverman, M., Janzen, E., and Grimmeiss, H. G., Solid State Commun. 46, 895 (1983)Google Scholar
[20] Abakumov, V. N., Perel, V. I., and Yassievich, I. N., Fiz. Tekh. Poluprovodn. 3, 1 (1978)Google Scholar
[21] Faulkner, R. A., Phys. Rev. 184, 713 (1969)CrossRefGoogle Scholar
[22] Rohatgi, A., Davis, J. R., Hopkins, R. H., and McMullin, P. G. Solid-State Electron. 26, 1039 (1983)Google Scholar
[23] Lemke, H., Phys. Status Solidi A 26, 193 (1983)CrossRefGoogle Scholar
[24] Zhou, Jie, Ji, Xiujing, Li, Shuying, Wu, Jian, Gao, Jilin, and Han, Zhiyoung Mater. Sci. For. 38–41, 457 (1989)Google Scholar
[25] Fujisaki, Yoshihisa, Ando, Toshio, Kozuka, Hirotsugu, and Takano, Yukio J. Appl. Phys. 63 (7), 2304 (1988)Google Scholar
[26] Schmalz, K., Gdanitz, H., Morgenstern, G., and Tittelbach-Helmrich, K. Phys. Status Solidi A 128, 153 (1991)Google Scholar
[27] Yau, L. D. and Sah, C. T., Solid State Electronics 17, 193 (1974)CrossRefGoogle Scholar