Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T07:23:07.215Z Has data issue: false hasContentIssue false

Electrical and Optical Properties of GaAs Heteroepitaxial Films on Si Substrates

Published online by Cambridge University Press:  26 February 2011

Takashi Nishioka
Affiliation:
NTT Electrical Communications Laboratories, Tokai, Ibaraki-ken 319–111, Japan
Yoshio Itoh
Affiliation:
NTT Electrical Communications Laboratories, Tokai, Ibaraki-ken 319–111, Japan
Masafumi Yamaguchi
Affiliation:
NTT Electrical Communications Laboratories, Tokai, Ibaraki-ken 319–111, Japan
Get access

Abstract

Electrical and optical properties of single-domain GaAs heteroepitaxial films grown on Si(100) by using metalorganic chemical vapor deposition have been investigated. Cathodolumi-nescence and electron-beam induced current experiments have revealed that signal nonuniformities on the film surface agree in number with GaAs microdefect densities observed through chemical etching, rather than conventional aligned etch-pit densities. The cathodoluminescence experiments also indicate that GaAs properties are improved with increases in film thickness. This nonuniformity and the film-thickness dependence are related to GaAs solar cell characteristics fabricated on the Si substrate. A GaAs/Si interface study proves that p-type Si substrates cause type conversions near the interface due to GaAs growth. Evidence of positive interface charges in the GaAs/Si system is determined by using Hall effect measurements, secondary-ion mass spectroscopy and electron-beam induced current experiments.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Akiyama, M., Kawarada, Y., and Kaminishi, K., Jpn. J. Appl. Phys. 23, L843 (1984).Google Scholar
2. Wang, W. I., Appl. Phys. Lett. 44, 1149 (1984).Google Scholar
3. Soga, T., Hattori, S., Sakai, S., Takayasu, M., and Umeno, M., Electron. Lett. 20, 916 (1984).Google Scholar
4. Shinoda, Y., Nishioka, T., and Ohmachi, Y., Jpn. J. Appl. Phys. 22, L450 (1983).Google Scholar
5. Choi, H. K., Tsaur, B-Y., Metze, G. M., Turner, G. W., and Fan, J. C. C., IEEE Electron Dev. Lett. EDL–5, 207 (1984).Google Scholar
6. Sakai, S., Soga, T., Takeyasu, M., and Umeno, M., Jpn. J. Appl. Phys. 24, L666 (1985).Google Scholar
7. Akiyama, M., Kawarada, Y., Ueda, T., Nishi, S., and Kaminishi, K., J. Crystal Growth 77, 490 (1986).Google Scholar
8. Fischer, R., Neuman, D., Zabel, H., and Morkoc, H., Appl. Phys. Lett. 48, 1223 (1986).Google Scholar
9. Otsuka, N., Choi, C., Nakamura, Y., Nagakura, S., Fischer, R., Peng, C. K., and Morkoc, H., Appl. Phys. Lett. 49, 277 (1986).Google Scholar
10. Tsaur, B-Y., Fan, J. C. C., Turner, G. W., King, B. D., McClelland, R. W., and Metze, G. M., 17th IEEE Photovolt. Spec. Con., 440 (Florida, 1984).Google Scholar
11. Wright, S. L., Kroemer, H., and Inada, M., J. Appl. Phys. 55, 2916 (1984).Google Scholar
12. Itoh, Y., Nishioka, T., and Yamaguchi, M., to be published in Appl. Phys. Lett. 49 (1986).Google Scholar
13. Yamaguchi, M. and Amano, C., J. Appl. Phys. 58, 3601 (1985).CrossRefGoogle Scholar
14. Abrahams, M. S. and Buiocchi, C.J., J. Appl. Phys. 36, 2855 (1965).Google Scholar
15. Yamamoto, A., Tonno, S., and Uemura, C., J. Electrochem. Soc. 128, 1095 (1981).CrossRefGoogle Scholar