Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T02:37:21.599Z Has data issue: false hasContentIssue false

Electrical and Chemical Control of Surfaces for DNA Immobilization and Hybridization

Published online by Cambridge University Press:  01 February 2011

Ricardo Cabeca
Affiliation:
[email protected], INESC-MN, INESC-MN, Rua Alves Redol, 9, Lisbon, 1000-029, Portugal
D. M.F. Prazeres
Affiliation:
[email protected], IST, IBB, Av. Rovisco Pais, Lisbon, 1049-001, Portugal
V. Chu
Affiliation:
[email protected], INESC-MN, Rua Alves Redol, 9, Lisbon, 1000-029, Portugal
J. P. Conde
Affiliation:
[email protected], INESC-MN, Rua Alves Redol, 9, Lisbon, 1000-029, Portugal
Get access

Abstract

We present the design of two biointerfaces on a SiO2 substrate for single stranded DNA (ssDNA) immobilization using either covalent grafting or electrostatic adsorption. The influence of the type of biointerface on the rate of diffusion-limited hybridization reaction with complementary ssDNA from a solution is studied. Patterning of the biointerfacefunctionalization layers and the scaling down of the reaction volumes to µL range is demonstrated. The use of externally applied electric field pulses is shown to accelerate the hybridization reaction kinetics to the sub-ms time scale.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Levicky, R. and Horgan, A., Trends in Biotechnology 23, 143 (2005).Google Scholar
2. Nedelcu, S. and Watson, J.H.P., J. Phys. D: Appl. Phys. 37, 2197 (2004).Google Scholar
3. Vainrub, A. and Pettitt, B.M., Biopolymers 68, 265 (2003).Google Scholar
4. Hoagland, D.A., Arvanitidou, E. and Welch, C., Macromolecules 32, 6180 (1999).Google Scholar
5. Germishuizen, W.A., Wälti, C., Wirtz, R., Johnston, M.B., Pepper, M., Davies, A.G. and Middelberg, A.P.J., Nanotechnology 14, 896 (2003).Google Scholar
6. Peterson, A.W., Heaton, R.J. and Georgiadis, R.M., Nuc. Acids Res. 29, 5163 (2001).Google Scholar
7. Hogan, M., Dattagupta, N. and Crothers, D.M., Proc. Natl. Acad. Sci. USA 75, 195 (1978).Google Scholar
8. Fixe, F., Chu, V., Prazeres, D.M.F. and Conde, J.P., Nuc. Acids Res. 32,e70 (2004).Google Scholar
9. Carré, A., Lacarrière, V., Birch, W., J. Colloid Interface Sci. 260, 49 (2003).Google Scholar