Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-09T14:11:00.670Z Has data issue: false hasContentIssue false

Elastomeric Polypeptide Biomaterials: Structure and Free Energy Transduction

Published online by Cambridge University Press:  21 February 2011

Dan W. Urry*
Affiliation:
Laboratory of Molecular Biophysics, School of Medicine, University of Alabama at Birmingham, Post Office Box 300, University Station, Birmingham, Alabama 35294
Get access

Abstract

The primary, secondary, tertiary and quaternary structures are presented and discussed for elastomeric polypeptides capable of undergoing inverse temperature transitions, that is, these polypeptides fold with the extrusion of water on raising the temperature through a transition. The elastomeric polypeptides, which are comprised of repeating peptide sequences, appear to be dominantly entropic elastomers. As these elastomers exhibit preferred secondary, tertiary and quarternary structure, they are not properly characterized as the random chain networks commonly ascribed to entropic elastomers. Instead, a mechanism of damping of internal chain dynamics on extension is described and referred to as the librational entropy mechanism of elasticity. Indeed, there are emerging a set of structural concepts for elastomeric polypeptides.

Of particular interest is that these elastomers are capable of exhibiting free energy transduction, e.g., thermomechanical and chemomechanical. A principle is stated for thermomechanical transduction and a postulate is given for chemomechanical transduction which is supported by prediction and experimental verification. The underlying mechanism is considered to be an aqueous(hydration) mediated apolar(hydrophobic)-polar interaction free energy which arises out of a competition between apolar and polar groups for limited waters of hydration. In general, there emerges a simple structural perspective of free energy transduction in elastomeric polypeptide biomaterials that involves thermal, mechanical or chemical means of altering the equilibrium between folded and unfolded states, where the folded states are dynamic helices called β-spirals with dominantly hydrophobic intramolecular interturn contacts and the unfolded states have the hydrophobic groups exposed to water.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yeh, H., Ornstein-Goldstein, N., Indik, Z., Sheppard, P., Anderson, N., Rosenbloom, J., Cicila, G., Yoon, K. and Rosenbloom, J.: Collagen and Related Research 7, 235 (1987).Google Scholar
2. Sandberg, L., Leslie, J., Leach, C., Torres, V., Smith, A. and Smith, D.: Pathol. Bio. 33, 266 (1985).Google Scholar
3. Smith, D.W., Sandberg, L. B., Leslie, B. H., Wolt, T. E., Minton, S. T., Myers, B. and Rucker, R. B.: Biochem. Biophys. Res. Commun. 103, 880885 (1981).Google Scholar
4. Indik, Z., Yeh, H., Ornstein-Goldstein, N., Sheppard, P., Anderson, N., Rosenbloom, J., Peltonen, L., and Rosenbloom, J.: Proc. Nati. Acad. ScL USA 84, 5680 (1987).Google Scholar
5. Urry, D. W. and Prasad, K. U., in Biocomoatibilitv of Tissue Analogues, edited by Williams, D.F., (CRC Press, Inc., Boca Raton, Florida, 1985), pp. 89116.Google Scholar
6. Urry, D. W., Harris, R. D., Long, M. M., and Prasad, K. U.: Int. J. Pept. Protein Res. 28, 649660 (1986).Google Scholar
7. Urry, D. W.: J. Protein Chem. 7, 134 (1988).Google Scholar
8. Urry, D. W., Jaggard, J., Harris, R. D., Chang, D. K..and Prasad, K. U., in Progress in Biomedical EPiymers. edited by Gebelein, Charles G., (Plenum Press). In press.Google Scholar
9. Urry, D. W., Cunningham, W. D., and Ohnishi, T.: Biochemistry 13, 609916 (1974).Google Scholar
10. Urry, D. W. and Ohnishi, T.: Biopolymers 13, 12231242 (1974).Google Scholar
11. Urry, D. W. and Ohnishi, T., in Peptides. Polypeptides and Proteins, edited by Bovey, F. A., Goodman, M. and Lotan, N., (John Wiley and Sons, Inc., New York, 1974), pp. 230247.Google Scholar
12. Cook, W. J., Einspahr, H. M., Trapane, T. L., Urry, D. W. and Bugg, C. E.: J. Am. Chem. Soc. 102, 55025505 (1980).Google Scholar
13. Chang, D. K., Prasad, K. U. and Urry, D. W.: In preparation.Google Scholar
14. Tamburro, A. M., Guantieri, V.: Int. J. Biol. MacromoL. 8, 6263 (1986).Google Scholar
15. Urry, D. W. and Long, M. M.: CRC Crit. Rev., Biochem. 4, 145 (1976).Google Scholar
16. Thomas, G.J. Jr., Prescott, B. and Urry, D. W.: Biopolymers 26, 921934 (1987).Google Scholar
17. Urry, D. W., Trapane, T. L., Sugano, H., and Prasad, K. U.: J. Am. Chem. Soc. 103, 20802089 (1981).Google Scholar
18. Chang, D. K., Venkatachalam, C. M., Prasad, K. U. and Urry, D. W.: J. of Biomolecular Structure & Dynamics 6, 851858 (1989).Google Scholar
19. Wasserman, Z. and Salemme, R.: Private communication.Google Scholar
20. Urry, D. W., in Methods in Enzvmologv, edited by Cunningham, L. W. and Frederiksen, D. W., (Academic Press, Inc., New York, New York, 1982), 82, pp. 673716.Google Scholar
21. Urry, D. W., Venkatachalam, V. E., Long, M. M. and Prasad, K. U., in Conformation in Biology, edited by Srinivasan, R. and Sarma, R. H., (Adenine Press, New York, 1982), pp. 1127.Google Scholar
22. Urry, D. W.: J. Protein Chem. 3, 403436 (1984).Google Scholar
23. Hoeve, C. A. J. and Flory, P. J.: Biopolymers 13, 677686 (1974).Google Scholar
24. Flory, P. J.: Rubber Chem. Technol. 41, G41 (1968).Google Scholar
25. Chang, D. K. and Urry, D. W.: J. of Computational Chemistry 10, 850855 (1989).Google Scholar
26. Khaled, M. A., Prasad, K. U., Vankatachalam, C. M. and Urry, D. W.: J. Am. Chem. Soc. 107, 71397145 (1985).Google Scholar
27. Urry, D. W.: J. Protein Chem. 7, 81114 (1988).Google Scholar
28. Urry, D. W., Haynes, B., Zhang, H., Harris, R. D. and Prasad, K. U.: Proc. Natl. Acad. ScL USA 85, 34073411 (1988).Google Scholar
29. Urry, D. W.: Intl. J. Quantum Chem.: Quantum Biol. Symp. 15, 235245 (1988).Google Scholar
30. Kuhn, W., Hargitay, B., Katchalsky, A. and Eisenberg, H.: Nature 165, 514516 (1950).Google Scholar
31. Katchalsky, A., Lifson, S., Michaeli, I. and Zwick, M., in “Size & Shape of Contractile Polymers: Conversion of Chemical into Mechanical Energy,” edited by Waserman, A., (Pergamon, New York, 1960), pp. 140.Google Scholar
32. Kuhn, W., Ramel, A. and Walters, D. H., in “Size & Shape of Contractile Polymers: Conversion of Chemical Into Mechanical Energy,” edited by Wasserman, A., (Pergamon, New York, 1960), pp. 4177.Google Scholar