Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T07:45:23.906Z Has data issue: false hasContentIssue false

Elastic-Recoil-Detection Measurement of Instabilities in Proton-Exchanged Lithium Niobate

Published online by Cambridge University Press:  26 February 2011

G. W. Arnold
Affiliation:
Sandia National Laboratories, Division 1112, Albuquerque, NM 87185–5800, USA
A. Carnera
Affiliation:
Sandia National Laboratories, Division 1112, Albuquerque, NM 87185–5800, USA
G. Mazzi
Affiliation:
Dipartimento di Fisica, Universita di Padova, Via Marzolo 8, 35131 Padova, Italy
P. Mazzoldi
Affiliation:
Dipartimento di Fisica, Universita di Padova, Via Marzolo 8, 35131 Padova, Italy
Get access

Abstract

The H and Li profiles in proton-exchanged (PE) LiNbO3, have been measured using elastic recoil detection (ERD). Profiles were determined as a function of crystal orientation, time after PE, annealing temperature, MgO-doping, and added Li-benzoate to the benzoic acid proton source. The proton-exchange process produces Hx Li1−x NbO3 structures where x stabilizes near values of x=0.5 or x=0.7-0.75 depending on specific conditions. The ERD measurements represent the first direct and simultaneous measurements of H- and Li-concentrations in PE LiNbO3 and their variation with process parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 See, e.g., Processing of Guided Wave Optoelectronic Materials, Proceedings of SPIE, Vol. 460, edited by R. L. Holman and D. M. Smyth, 1984.Google Scholar
2 Armenise, M. N., Canali, C., DeSario, M., Camera, A., Mazzoldi, P., and Celotti, G., J. Appl. Phys. 54, 62 (1983).Google Scholar
3 Jackel, J. L., Rice, C. E., and Veselka, J. J., Appl. Phys. Lett. 41, 607 (1982).Google Scholar
4 Carruthers, J. R., Kaminow, I. P., and Stulz, L. W., Appl. Optics 13, 2333 (1974).Google Scholar
5 Destefanis, G. L., Gailliard, J. P., Ligeon, E. L., Vallette, S., Farmery, B. W., Towmsend, P. D., and Perez, A., J. Appl. Phys. 50, 7898 (1979).Google Scholar
6 Appleton, B. R., Beardsley, G. M., Farlow, G. C., Christie, W. H., and Ashley, P. R., J. Mater. Res. 1, 104 (1986).Google Scholar
7 Clark, D. F., Nutt, A. C. G., Wong, K. K., Laybourn, P. J. R., and De La Rue, R. M., J. Appl. Phys. 54, 6218 (1983).Google Scholar
8 Sanford, N. A. and Robinson, W. C., Optics Lett. 10, 190 (1985).Google Scholar
9 Canali, C., Camera, A., Delia Mea, G., De La Rue, R. M., Nutt, A. C. G., and Tobin, J. R., Proceedings of SPIE 460, 49 (1984).Google Scholar
10 Rice, C. E., Jackel, J. L., and Brown, W. L., J. Appl. Phys. 57, 4437 (1985).Google Scholar
11 Lee, W. E., Stanford, N. A., and Heuer, A. H., J. Appl. Phys. 59, 2629 (1986).Google Scholar
12 Jackel, J., Glass, A. M., Peterson, G. E., Rice, C. E., Olson, D. H., and Veselka, J. J., J. Appl. Phys. 55, 269 (1984).Google Scholar
13 Jackel, J. L. and Rice, C. E., Proceedings of SPIE 460, 43 (1984).Google Scholar
14 Bryan, D. A., Gerson, R., and Tomaschke, H. E., Appl. Phys. Lett. 44, 847 (1984).Google Scholar
15 Terreault, B., Martel, J. G., St.-Jacques, R. G., and L'Ecuyer, J., J. Vac. Sei. Technol. 14, 492 (1977).Google Scholar
16 Arnold, G. W., Doyle, B. L., and Bunker, B. C., in Proceedings of the Three-Day In-Depth Review of the Nuclear Accelerator Impact on the Interdisciplinary Field, edited by Mazzoldi, P. and Moschini, G. (Laboratori Nazionali di Legnaro (Padova), Italy, 1984), p. 120.Google Scholar