Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-20T09:26:17.971Z Has data issue: false hasContentIssue false

Elastic Misfit Strain Relaxation in Highly Strained InAs Dots on GaAs as Studied by Tem, AFM and VFF Atomistic Calculations

Published online by Cambridge University Press:  21 February 2011

Y. Androussi
Affiliation:
LSPES - USTLBâtiment C6, 59655 Villeneuve d'Ascq cedex, France
P. Francois
Affiliation:
LSPES - USTLBâtiment C6, 59655 Villeneuve d'Ascq cedex, France
A. Lefebvre
Affiliation:
LSPES - USTLBâtiment C6, 59655 Villeneuve d'Ascq cedex, France
C. Priester
Affiliation:
IEMN, Dept ISEN, 41 Bvd Vauban, 59046 Lille cedex, France
I. Lefebvre
Affiliation:
IEMN, Dept ISEN, 41 Bvd Vauban, 59046 Lille cedex, France
G. Allan
Affiliation:
IEMN, Dept ISEN, 41 Bvd Vauban, 59046 Lille cedex, France
M. Lannoo
Affiliation:
IEMN, Dept ISEN, 41 Bvd Vauban, 59046 Lille cedex, France
J. M. Moison
Affiliation:
France Telecom, CNET Paris B, Laboratoire de Bagneux, 196 Avenue Henri Ravera, BP107, 92225 Bagneux cedex, France
N. Lebouche
Affiliation:
France Telecom, CNET Paris B, Laboratoire de Bagneux, 196 Avenue Henri Ravera, BP107, 92225 Bagneux cedex, France
F. Barthe
Affiliation:
France Telecom, CNET Paris B, Laboratoire de Bagneux, 196 Avenue Henri Ravera, BP107, 92225 Bagneux cedex, France
Get access

Abstract

The deposition of InAs on GaAs results, above a 1.75 monolayer coverage, in the formation of dots on a residual 2D wetting layer. Atomic force microscopy (AFM) measurements show that these dots are in the quantum size range (height 3 nm, half-base 12 nm). Transmission electron microcopy (AFM) observations show that they are coherently strained and the corresponding strain contrast is simulated using the dynamical electron diffraction contrast theory. The dot strain fields used for the TEM contrast simulations are either deduced from continuous elastic models or determined by valence force field (VFF) atomistic calculations. That experimental TEM images and simulated images should match shows that the methods of determination of the dot strain fields are valid.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Asada, M., Miyamoto, Y. and Svetmasu, Y., Jpn. J; Appl. Phys., 24, L95 (1985).Google Scholar
2. Weisbuch, C. and Vinter, G., Quantum semiconductor Structures (Academic Press, Boston, MA, 1991).Google Scholar
3. Petroff, P.M., Gossard, A.C., Logan, R.A. and Wiegmann, W., Appl. Phys. Lett., 41, 635 (1982).Google Scholar
4. Brandt, O., Tapfer, L., Ploog, K., Bierwolf, R., Hohenstein, M., Philipp, F., Lage, H. and Heberle, A., Phys. Rev. B 44, 8043 (1991).Google Scholar
5. Izrael, A., Sermage, B., Marzin, J.Y., Ougazzaden, A., Azoulay, R. and Etrillard, J., Appl. Phys. lett., 59, 3577 (1991).Google Scholar
6. Sercel, P.C., Saunders, W.A., Atwater, H.A., Vahala, K.J. and Flagan, R.C., Appl. Phys. Lett., 61, 696 (1992).Google Scholar
7. Leonard, D., Krishnamurty, M., Reaves, C.M., Denbaars, S.P. and Petroff, P.M., Appl. Phys. Lett., 63, 3203 (1993).Google Scholar
8. Moison, J.M., Houzay, F., Bartne, F., Leprince, L., André, E. and Vatel, O., Appl. Phys. Lett. 64, 196 (1994).Google Scholar
9. Guha, S., Madhukar, A. and Rajkumar, K.C., Appl. Phys. Lett. 57, 2110 (1990).Google Scholar
10. Androussi, Y., Lefebvre, A., Courboulès, B., Grandjean, N., Massies, J., Bouhacina, T. and Aimé, J.P., Appl. Phys. Lett., 65, 1162 (1994).Google Scholar
11. Eaglesham, D.J. and Cernilo, M., Phys. Rev. Lett. 64, 1943 (1990).Google Scholar
12. Hirsch, P.B., Howie, A., Nicholson, R.B., Pashley, R.B. and Whelan, M.J., Electron Microscopy of Thin Crystals (Robert E. Krieger, New York, 1977), chapter 10.Google Scholar
13. Head, A.K., Aust. J. Phys., 20, 557 (1967).Google Scholar
14. Srolovitz, D.J., Acta Metall., 37, 621 (1989).Google Scholar
15. Gao, H., J. Mech. Phys., 39, 443 (1991).Google Scholar
16. Grilhé, J., Acta Metall. Mater., 41, 909 (1993).Google Scholar
17. Musgrave, M.J.P. and Popie, J.A., Proc. Roy. Soc. (London), A268, 464 (1962).Google Scholar
18. Priester, C., Lefebvre, I., Allan, G. and Lannoo, M. in Mechanisms of Thin Film Evolution, edited by Yalisove, S.M., Thompson, C.V. and Eaglesham, D.J. (Mater. Res. Soc. Proc. 317, Pittsburgh, PA, 1993) pp. 131136.Google Scholar
19. Yao, J.Y., Andersson, T.G. and Dunlop, G.L., J. Appl. Phys. 69, 2224 (1991).Google Scholar
20. Ashby, M.F. and Brown, L.M., Philos. Mag., 8, 1083 (1963).Google Scholar
21. Pidduck, A.J., Robbins, D.J., Cullis, A.G., Leong, W.Y. and Pitt, A.M., Thin Sol. Films, 222, 78 (1992).Google Scholar
22. Hull, R. and Fischer-Colbrie, A., Appl. Phys. Lett. 50, 851 (1987).Google Scholar
23. Leprince, L., Thesis, Paris XI University, 1993.Google Scholar