Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:57:46.888Z Has data issue: false hasContentIssue false

Elastic Heterophase Domains in Ferroelectric Epitaxial Films

Published online by Cambridge University Press:  28 October 2011

A. L. Roytburd*
Affiliation:
University of Maryland, College Park, MD 20742, U. S. A.
J. Ouyang*
Affiliation:
Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials (Ministry of Education), Engineering Ceramics Laboratory, School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, People’s Republic of China
B. M. Boyerinas
Affiliation:
University of Maryland, College Park, MD 20742, U. S. A.
H. A. Bruck
Affiliation:
University of Maryland, College Park, MD 20742, U. S. A.
J. Slutsker
Affiliation:
University of Maryland, College Park, MD 20742, U. S. A.
A. Artemev
Affiliation:
Carleton University, Ottawa, ON KIS 5B6, Canada.
*
*Corresponding authors: [email protected], [email protected].
*Corresponding authors: [email protected], [email protected].
Get access

Abstract

A heterophase polydomain structure has been recently discovered in BiFeO3 epitaxial ferroelectric films, which provides large electromechanical responses. In this work, the formation of such a microstructure is explained by theory of elastic domains. The thermodynamics of the heterophase polydomain microstructure is analyzed to predict the equilibrium volume fraction of domains at different film-substrate lattice misfits. Extrinsic mechanical and piezoelectric properties are discussed for the heterophase polydomains. It is shown that an applied electric field, which increases electrostatic interaction between domains, may lead to dramatic increase of piezo response. The results of this work are in good agreement with experimental data for BiFeO3.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Roitburd, A. L., in Solid State Physics, edited by Ehrenreich, H., Seitz, F., and Turnbull, D. (Academic, New York, 1978), Vol 33, p 137.Google Scholar
2. Khachaturyan, A. G., Theory of Structural Transformation in Solids (Wiley, New York, 1983).Google Scholar
3. Roitburd, A. L., Soviet Physics-Solid State, 13, 1820 (1971).Google Scholar
4. Roytburd, A. L., Phys. Stat. Sol. (a) 37, 329 (1976).Google Scholar
5. Tagantsev, A. K., Cross, L. E., and Fousek, J., Domains in Ferroic Crystals and Thin Films (Springer Science and Business Media, 2010).Google Scholar
6. Roytburd, A. L., Mat. Res. Soc. Symp. Proc. 221, 255 (1991), 311, 137(1993).Google Scholar
7. Roytburd, A. L., J. Appl. Phys. 83, 228 (1998); 83, 239(1998).Google Scholar
8. Artemev, A., Slutsker, J., and Roytburd, A. L., Acta Mat. 53(12), 3425 (2005).Google Scholar
9. Plake, T., Ramsteiner, M., Kaganer, V. M., Jenichen, B., Kastner, M., Daweritz, L., Ploog, K. H., Appl. Phys. Lett. 80, (2002).Google Scholar
10. Kaganer, V. M., Jenichen, B., Schippan, F., Braun, W., Däweritz, L., and Ploog, K. H., Phys. Rev. B, 66, 045305, (2002).Google Scholar
11. Zeches, R. J., Rossell, M. D., Zhang, J. X., Hatt, A. J., He, Q., Yang, C.-H., Kumar, A., Wang, C. H., Melville, A., Adamo, C., Sheng, G., Chu, Y.-H., Ihlefeld, J. F., Erni, R., Ederer, C., Gopalan, V., Chen, L. Q., Schlom, D. G., Spaldin, N. A., Martin, L. W., Ramesh, R., Science, 326, 977 (2009).Google Scholar
12. Advances in the Fundamental Physics of Ferroelectrics and Related Materials, Workshop, Aspen Center for Physics, Aspen CO (2010)Google Scholar
13. Fundamental Physics of Ferroelectrics and Related Materials, Workshop, National Institutre of Standards and Technology, Gaithersburg MD (2011)Google Scholar
14. Wang, Junling, Ph.D. Thesis, University of Maryland, 2003.Google Scholar
15. Ederer, C., Spaldin, N. A., Phys. Rev. Lett. 95, 257601(2005).Google Scholar
16. Ouyang, J. and Roytburd, A. L., Acta Mater., 54, 5565 (2006).Google Scholar
17. Ouyang, J., Zhang, W., Huang, X., Roytburd, A. L., Acta Mater (2011), doi:10.1016/j.actamat. 2011.02.008.Google Scholar
18. Zhang, J. X., Li, Y. L., Choudhury, S., Chen, L. Q., Chu, Y. H., Zavaliche, F., Cruz, M. P., Ramesh, R. and Jia, Q. X., J. of Appl. Phys., 103, 094111 (2008). Y∼186 Gpa.Google Scholar
19. Yun, K. Y., Ricinschi, D., Kanashima, T., and Okuyama, M., Appl. Phys. Lett. 89, 192902 (2006).Google Scholar
20. Roytburd, A. L., Slutsker, J., J. Mech. Phys. Solids. 47, 2331 (1999)Google Scholar
21. Slutsker, J., Roytburd, A. L., Int. Journal of Plasticity 18, 1561 (2002)Google Scholar
22. Zhang, J. X., Xiang, B., He, Q., Seidel, J., Zeches, R. J., Yu, P., Yang, S. Y., Wang, C. H., Chu, Y-H., Martin, L. W., Minor, A. M., Ramesh, R., Nature Nanotechnology Letters 6, 98 (2011).Google Scholar
23. Jiang, Q. and Qiu, J. H., J. of Appl. Phys., 99, 103901, (2006).Google Scholar
24. Shelke, V., Srinivasan, G., and Gupta, A., Phys. Stat. Sol. RRL, 4(3-4), 79 (2010).Google Scholar
25. Huang, C. H., Chu, Y. H., Chen, Z. H., Wang, Junling, Sritharan, T., He, Q., Ramesh, R. and Chen, Lang, Appl. Phys. Lett. 97, 152901 (2010).Google Scholar
26. Pertsev, N.A., Zembilgotov, A.G., Tagantsev, A.K., Phys. Rev. Lett. 80 (9), 1988 (1998).Google Scholar
27. Pertsev, N.A., Koukhar, V.G., Phys. Rev. Lett. 84, 3722 (2000).Google Scholar
28. Wang, Yu. U., J. Mat. Sci., 44(19), 5225 (2009).Google Scholar