Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T07:29:11.495Z Has data issue: false hasContentIssue false

Efficient blue luminescence from colloidal CdSe quantum-dot quantum-well nanocrystals

Published online by Cambridge University Press:  31 May 2013

Y. Lu
Affiliation:
Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
X. A. Cao
Affiliation:
Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
Get access

Abstract

CdS/CdSe/ZnS quantum dot quantum well (QDQW) nanocrystals were synthesized using the successive ion layer adsorption and reaction technique. CdSe QWs with a well width of 1.05 nm emitted blue light at 467 nm with a spectral full-width-at-half-maximum of ∼30 nm. It was found that a 3-monolayer ZnS outer cladding layer can effectively passivate the QDQW structures, leading to a ∼35% quantum yield (QY) of the QW photoluminescence. QDQW light-emitting diodes (LEDs) with blue QW electroluminescence (EL) were fabricated. The devices with an emitting layer comprising QDQWs embedded in a poly(N-vinylcarbazole) host were five times brighter than LEDs based on closely-packed QDQWs. However, the overall EL of the devices was dominated by interface state emission due to poor charge injection into the QDQWs.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Talapin, D. V., Lee, J., Kovalenko, M., Shevchenko, E., Chem. Rev. 110(1), 389458 (2010).CrossRefGoogle Scholar
Reiss, P., Protie`re, M., and Li, L., Small 5(2), 154168 (2009).CrossRefGoogle Scholar
Tan, Z., Zhang, F., Zhu, T., Xu, J., Wang, A. Y., Dixon, J. D., Li, L., Zhang, Q., Mohney, S. E., and Ruzyllo, J., Nano Lett. 7(12), 38033807 (2007).CrossRefGoogle Scholar
Bae, W., Kwak, J., Lim, J., Lee, D., Nam, M., Lee, C., Lee, S., Nanotech. 20(7), 075202 (2009).CrossRefGoogle Scholar
Yu, W. W., Qu, L. H., Guo, W. Z., Peng, X. G., Chem. Mater. 15(14), 28542860 (2003).CrossRefGoogle Scholar
Battaglia, D., Blackman, B., Peng, X., J. Am. Chem. Soc. 127(31), 1088910897 (2005).CrossRefGoogle Scholar
Braun, M., Burda, C., and El-Sayed, M.A., J. Phys. Chem. 105(23), 55485551 (2001).CrossRefGoogle Scholar
Little, R.B., El-Sayed, M.A., Bryant, G. and Burke, S., J. Chem. Phys. 114, 18131822 (2001).CrossRefGoogle Scholar
Schill, A. W., Gaddis, C. S., Qian, W., El-Sayed, M. A. Cai, Y., Milam, V. T., Sandhage, K. H., Nano Lett. 6(9), 19401949 (2006).CrossRefGoogle Scholar
Sapra, S., Mayilo, S., Klar, T., Rogach, A., and Feldmann, J., Adv. Mater. 19, 569572 (2007).CrossRefGoogle Scholar
Li, J., Wang, Y., Guo, W., Keay, J., Mishima, T., Johnson, M., Peng, X., J. Am. Chem. Soc. 125(41), 1256712575 (2003).CrossRefGoogle Scholar
Lu, Y., Zhang, Y. Q., and Cao, X. A., Appl. Phys. Lett. 102, 023106 (2013).CrossRefGoogle Scholar