Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-20T04:03:23.305Z Has data issue: false hasContentIssue false

Effects of Transient Diffusion on Ipvd Feature Scale Evolution

Published online by Cambridge University Press:  10 February 2011

G. -S. Kim
Affiliation:
Department of Chemical Engineering, Massachusetts Institute Technology, Cambridge, MA, 02139, USA
U. P. Hansen
Affiliation:
Department of Chemical Engineering, Massachusetts Institute Technology, Cambridge, MA, 02139, USA Walter Schottky Institute, Technical University of Munich, D-85748 Garching, Germany
S. T. Rodgers
Affiliation:
Department of Chemical Engineering, Massachusetts Institute Technology, Cambridge, MA, 02139, USA
K. F Jensen
Affiliation:
Department of Chemical Engineering, Massachusetts Institute Technology, Cambridge, MA, 02139, USA
Get access

Abstract

We present a simulation study of the long range diffusion behavior of impinging atoms during ionized physical vapor deposition conditions with focus on grazing angles of incidence and kinetic energies in the range of 35 eV to 50 eV. Two different types of long range diffusion processes are observed and investigated: (1) diffusion of atoms ultimately adsorbing and (2) diffusion of atoms that eventually desorb. The simulations reveal that the second case is particularly pronounced for grazing angles and high kinetic energies, since the adsorption probability is very low under those conditions. In a further step, information about diffusion lengths is incorporated into a previously developed level set profile simulator to predict thin film topologies. These feature scale simulations show that long-range diffusion diminishes “macroscopic” grooving.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rossnagel, S. M., J. Vac. Sci. Technol. B 16, 2585– (1998).Google Scholar
2. Lu, Z. C., Foster, J. E., Snodgrass, T. G., Booske, J. H., and Wendt, A. E., J. Vac. Sci. Technol. A 17, 840– (1999).Google Scholar
3. Zhong, G. and Hopwood, J., J. Vac. Sci. Technol. B 17, 405– (1999).Google Scholar
4. Coronel, D. G., Hansen, D. E., Voter, A. F., Liu, C., Liu, X., and Kress, J. D., Appl. Phys. Lett. 73, 3860– (1998).Google Scholar
5. Kress, J. D., Hanson, D. E., Voter, A. F., Liu, C. L., Liu, X.-Y., and Coronell, D. G., J. Vac. Sci. Technol. A 17, 2819– (1999).Google Scholar
6. Hansen, U., Vogl, P., and Fiorentini, V., Phys. Rev. B 59, 7856– (1999).Google Scholar
7. Egelhoff, W. F. Jr. and Jacob, I., Phys. Rev. Lett. 62, 921– (1989).Google Scholar
8. Morikawa, H., Kokura, M., Iwatsu, F., Terao, T., Thin Solid Films 254, 103– (1995).Google Scholar
9. Zhou, X. W. and Wadley, H. N. G., Surface Science 431, 42– (1999).Google Scholar
10. Kratzer, M., Brinkmann, R. P., Schmidt, H., and Wachutka, G., submitted to J. Appl. Phys., (1999).Google Scholar
11. Sethian, J. A., Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. (Cambridge University Press, Cambridge, 1999).Google Scholar
12. Hansen, U. and Kersch, A., Phys. Rev. B 60, 14417– (1999).Google Scholar
13. Foiles, S. M., MRS Bulletin 21, 24– (1996).Google Scholar
14. Hansen, U. and Vogl, P., Phys. Rev. B 60, 5055– (1999).Google Scholar
15. Frenkel, D. and Smit, B., Understanding Molecular Simulations: From Algorithms to Application. (Academic Press, Boston, 1996).Google Scholar
16. Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids. (Oxford University Press, Oxford, 1996).Google Scholar
17. Hansen, U., Rodgers, S., and Jensen, K. F., Phys. Rev. B, (2000) (to appear).Google Scholar