Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T19:38:54.160Z Has data issue: false hasContentIssue false

Effects of Thermal Donor Generation and Annihilation Upon Oxygen Precipitation

Published online by Cambridge University Press:  28 February 2011

S. Hahn
Affiliation:
Siltec Corporation, Mountain View, CA 94043
S. C. Shatas
Affiliation:
Peak Systems, Fremont, CA 94358
H. J. Stein
Affiliation:
Sandia National Laboratories, Alburquerque, NM 87185
Get access

Abstract

Rapid thermal annealing and furnace annealing steps have been combined to investigate the effects of thermal donor generation and annihilation upon oxygen precipitation in low and high carbon content silicon wafers. Thermal donors were formed by furnace annealing at 450°C. Rapid thermal annealing was performed in 10 s periods at temperatures between 600° and 1000°C and was followed by two step furnace annealing at 700° and 950 °C. Rapid thermal annealing separates the annealing stage for thermal donor removal from that for removal of oxygen precipitate nuclei, and a marked dependence upon carbon is observed for nuclei stability under RTA. Implications of these observations for models of precipitate nuclei are considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For recent discussions on thermal donors in silicon see “Proc. 13th International Conf. on Defects in Semiconductors” edited by Kimerling, L.C. and Parsey, J.M. Jr, Metallurgical Society of American Instititute of Mining, Metallurgical and Petroleum Engineers, Warrendale, PA (1985) pp. 129–146 and pp. 639–733.Google Scholar
2. Stein, H.J., Hahn, S.K. and Shatas, S.C., Mat.Res.Soc.Symp. Proc. Vol.46 (1985) p. 269.Google Scholar
3. Inoue, N., Wada, K., and Osaka, J., in “Semiconductor Silicon 1981”, ed. Huff, H.R., Kriegler, R.J., and Takeishi, Y., Proc. Vol. 81–5, The Electrochemical Society, p. 282 (1981).Google Scholar
4. Pinizzotto, R.F., Schaake, H.F., Massey, R.G., and Heidt, D.W., Mat.Res.Soc.Symp.Proc. Vol.36 (1985) p. 275.Google Scholar
5. Kishino, S., Aoshima, T., Yoshinaka, A., Shimizu, H., and Ona, M., Jap.J.Appl.Phys. 23 (1984) L9.Google Scholar
6. Pinizzotto, R.F. and Marks, S., Mat.Res.Soc.Symp.Proc. Vol. 14 (1983) p. 147.CrossRefGoogle Scholar
7. Schaake, H.F., Baber, S.C., and Pinizzotto, R.F., in “Semiconductor Silicon 1981,” ed. Huff, H.R., Kriegler, R.J. and Takeishi, Y., Proc. Vol. 81–5, The Electrochemical Society, p. 273 (1981).Google Scholar
8. Wada, K., Phys. Rev. B 30, 5884 (1984).Google Scholar
9. G..Oehrlein, S. and Corbett, J.W., Mat.Res.Soc.Sym.Proc. Vol. 14 (1983) p. 107.Google Scholar
10. Bourret, A., Thiboult-Dessaux, J., and Seidman, D.N., J.Appl. Phys. 55, 825 (1984).Google Scholar
11. Newman, R.C. and Bean, A.R. in “Radiation Effects in Semiconductors” ed. Corbett, J.W. and Watkins, G.D., Gordon and Breach Science Publishers, New York, NY (1971) p. 155.Google Scholar