Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T09:28:40.664Z Has data issue: false hasContentIssue false

Effects of Processing Conditions on the Physical and Electrochemical Properties of Carbon Aerogel Composites

Published online by Cambridge University Press:  10 February 2011

T. D. Tran
Affiliation:
Chemistry & Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA 94550
D. Lenz
Affiliation:
Chemistry & Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA 94550
K. Kinoshita
Affiliation:
Energy and Environmental Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
M. Droege
Affiliation:
Ocellus, Inc., 887 A Industrial Road, San Carlos, CA 94070
Get access

Abstract

The carbon aerogel/carbon paper composites have physical properties similar to those of monolithic carbon aerogels but do not require supercritical extraction during fabrication. The resorcinol-formaldehyde based carbon aerogel phase is intertwined between the fibers of a commercial carbon paper. The resulting composites have variable densities (0.4–0.6 g/cc), high surface areas (300–600 m2/g), and controllable pore sizes and pore distribution. The effects of the resorcinol-formaldehyde concentrations (50–70% w/v) and the pyrolysis temperature (600–1050°C) were studied in an attempt to tailor the aerogel microstructure and properties. The composite physical properties and structure were analyzed by transmission electron microscopy and multipoint-BET analyses and related to electrochemical capacitive data in 5M KOH. These thin carbon aerogel/carbon paper composite electrodes are used in experiments with electrochemical double-layer capacitors and capacitive deionization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mayer, S. T., Pekala, R. W., and Kaschimitter, J. L., J. Electrochem. Soc., 140, 446 (1993).Google Scholar
2. Farmer, J. C., Fix, D., Mack, G., Pekala, R., and Poco, J., J. Appl. Electrochem., 26, 1007 (1996).Google Scholar
3. Pekala, R. W., Farmer, J. C., Alviso, C. T., Tran, T. D., Mayer, S. T., Miller, J. M., and Dunn, B., Proceeding volume of the Fifth International Society of Aerogels, Montellier, France, September 8–10, (1997).Google Scholar
4. Pekala, R. W., J. Mat. Sci., 24, 3221 (1989).Google Scholar
5. Pekala, R. W., Alviso, C. T., Lu, X., Gross, J. and Fricke, J., J. of Non-crystalline Solids, 188, 34 (1995).Google Scholar
6. Tamon, H., Ishizaka, H., Mikami, M., and Okazaki, M., Carbon, 35, 791 (1997).Google Scholar
7. Song, J. H., Lee, H. J., and Kim, J. H., Han'guk Chaelyo Hakhoechi, 6, 1082 (1996).Google Scholar
8. Pekala, R. W., and Alviso, C. T. in Novel Forms of Carbon, edited by Renschler, C. L., Pouch, J. J., and Cox, D. M., p. 3, (1992).Google Scholar
9. Pekala, R. W., Mayer, S. T., Poco, J. F. and Kaschmitter, J. L. in Novel Forms of Carbon II, edited by Renschler, C. L., Cox, D. M., and Pouch, J. J., p. 79, (1994).Google Scholar
10. Barret, E. P., Joyner, L. G. and Halenda, P., J. Amer. Chem. Soc., 73, 373 (1951).Google Scholar
11. GenCorp.&Aerojet Company (Sacramento, CA)Google Scholar
12. Tran, T. D., Murguia, L., Wills, J. and Pekala, R. W., Abstract Y8.30, Materials Research Society fall meeting, Boston, MA, December 1–5, (1997).Google Scholar