Article contents
Effects of Nanocrystalline Structure and Passivation on the Photoluminescent Properties of Porous Silicon Carbide
Published online by Cambridge University Press: 15 February 2011
Abstract
We present the results of an investigation of the dependence of the photoluminescence (PL) spectra on preparation conditions, the resulting microstructure, and post-anodization treatment of porous silicon carbide films which were formed from both p and n-type 6H-SiC substrates. Porous samples were prepared by anodic dissolution under different galvanostatic conditions, resulting in different porosities and crystallite sizes. Selected-area electron diffraction patterns taken on similarly prepared porous silicon carbide (PSC) samples confirmed that the films were monocrystalline. Transmission electron microscopy of as-anodized films revealed an isotropie porous network; a dependence of porosity and nanocrystallite size on porous layer formation current density was established. Some PSC samples were passivated using a short, thermal oxidation treatment. The effects of porosity and crystallite size, and of oxide passivation in these PSC films, on PL spectra and intensity were studied using a 365 nm Kr-ion laser as excitation. Under certain conditions, the spectrally integrated PL intensity of a passivated film is more than 450x that for the original bulk SiC substrate. PL spectra are presented, and possible mechanisms are discussed.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1997
Footnotes
also with Kulite Semiconductor Products, Inc.
References
REFERENCES
- 2
- Cited by