Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T18:28:56.887Z Has data issue: false hasContentIssue false

Effects of Nanocrystalline Structure and Passivation on the Photoluminescent Properties of Porous Silicon Carbide

Published online by Cambridge University Press:  15 February 2011

Jonathan E. Spanier
Affiliation:
School of Engineering and Applied Science, Columbia University, New York, NY 10027
G. S. Cargill III
Affiliation:
School of Engineering and Applied Science, Columbia University, New York, NY 10027
Irving P. Herman
Affiliation:
School of Engineering and Applied Science, Columbia University, New York, NY 10027
Sangsig Kim*
Affiliation:
School of Engineering and Applied Science, Columbia University, New York, NY 10027
David R. Goldstein
Affiliation:
Kulite Semiconductor Products, Inc., Leonia, NJ 07605
Anthony D. Kurtz
Affiliation:
Kulite Semiconductor Products, Inc., Leonia, NJ 07605
Ben Z. Weiss
Affiliation:
The Technion, Israel Institute of Technology, Department of Materials Engineering, Haifa, Israel 32000
*
2 current address: University of Illinois, Department of Electrical Engineering, Microelectronics Lab, Urbana, IL 61801.
Get access

Abstract

We present the results of an investigation of the dependence of the photoluminescence (PL) spectra on preparation conditions, the resulting microstructure, and post-anodization treatment of porous silicon carbide films which were formed from both p and n-type 6H-SiC substrates. Porous samples were prepared by anodic dissolution under different galvanostatic conditions, resulting in different porosities and crystallite sizes. Selected-area electron diffraction patterns taken on similarly prepared porous silicon carbide (PSC) samples confirmed that the films were monocrystalline. Transmission electron microscopy of as-anodized films revealed an isotropie porous network; a dependence of porosity and nanocrystallite size on porous layer formation current density was established. Some PSC samples were passivated using a short, thermal oxidation treatment. The effects of porosity and crystallite size, and of oxide passivation in these PSC films, on PL spectra and intensity were studied using a 365 nm Kr-ion laser as excitation. Under certain conditions, the spectrally integrated PL intensity of a passivated film is more than 450x that for the original bulk SiC substrate. PL spectra are presented, and possible mechanisms are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

also with Kulite Semiconductor Products, Inc.

References

REFERENCES

1.Canham, L.T., Leong, W.Y., Beale, M.J., Cox, T.J., and Taylor, L., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2.Richter, A., Steiner, P., Kozlowski, F., and Lang, W., IEEE Trans. Electron Device Lett. EDL-12, 691 (1991).Google Scholar
3.Koshida, N. and Koyama, H., Appl. Phys. Lett. 60, 347 (1992).Google Scholar
4.Smith, R.L. and Collins, S.D., J. Appl. Phys. 71, R1 (1992).Google Scholar
5.Namavar, F., Maruska, H.P., and Kalkhoran, N.M., Appl. Phys. Lett. 60, 2514 (1992).Google Scholar
6.Tsybeskov, L., Duttagupta, S.P., Hirshman, K.D. and Fauchet, P.M., Appl. Phys. Lett. 68, 2058 (1996).Google Scholar
7.Hamilton, B., Semicond. Sci Technol. 10, 1187 (1995).Google Scholar
8.Gardelis, S. and Hamilton, B., J. Appl. Phys. 76, 5328 (1994).Google Scholar
9.Pickering, C., Beale, M.I.J., Robbins, D.J., Pearson, P.J. and Greef, R., J. Appl. Phys. C: Solid State Physics 17, 6535 (1984).Google Scholar
10.Li, K., Diaz, D., Campbell, J., and Tsai, C., in Porous Silicon, edited by Feng, Z.C. and Tsu, R. (World Scientific, Singapore, 1994) pp. 261274.Google Scholar
11.Lauerhaas, J.M., Credo, G.M., Heinrich, J.L., and Sailor, M.J., J. Am. Phys. Soc. 114, 1911 (1992).Google Scholar
12.Tsybeskov, L., Duttagupta, S.P., and Fauchet, P.M., Solid State Comm. 95, 429 (1995).Google Scholar
13.Petrova-Koch, V., Muschik, T., Kux, A., Meyer, B.K., Koch, F., and Lehmann, V., Appl. Phys. Lett. 61, 943 (1992).Google Scholar
14.Li, K-H., Tsai, C., Cambell, J.C., Hance, B.K., and White, J.M., Appl. Phys. Lett. 62, 3501 (1993).Google Scholar
15.Li, G., Hou, X., Yuan, S., Chen, H., Zhang, F., Fan, H., Wang, X., J. Appl. Phys. 80, 5967 (1996).Google Scholar
16.Brander, R.W. and Sutton, R.P. Br, J. Appl. Phys. 2, 309 (1969).Google Scholar
17.Muench, W.V., Kuerzinger, W.. and Pfaffeneder, I., Solid State Electron. 19, 871 (1976).Google Scholar
18.Ikeda, M., Hayakawa, T., Yamagiwa, S., Matsunami, H., and Tanaka, T.. J. Appl. Phys. 50, 8215 (1979).Google Scholar
19.Nishino, S., Ibaragi, A.. Matsunami, H., and Tanaka, T., Jpn. J. Appl. Phys, 19, L353 (1980).Google Scholar
20.Edmond, J.A., Kong, H.-S., Carter, C. Jr., Physica B 185, 453 (1993).Google Scholar
21.Shor, J.S., Grimberg, I., Weiss, B.Z., and Kurtz, A.D., Appl. Phys. Lett. 62, 2836 (1993).Google Scholar
22.Shor, J.S., Bemis, L., Kurtz, A.D., Grimberg, I., Weiss, B.Z., MacMillan, M.F., Choyke, W.J., J. Appl. Phys. 76, 4045 (1994).Google Scholar
23.Matsumoto, T., Takahashi, J., Tamaki, T., Fugati, T., Mimura, H., and Kanemitsu, Y., Appl. Phys. Lett. 64, 226 (1994).Google Scholar
24.Petrova-Koch, V., Sreseli, O., Polisski, G., Kovalev, D., Muschik, T., and Koch, F., Thin Solid Films 255, 107 (1995).Google Scholar
25.Konstantinov, A., Henry, A., Harris, C.I. and Janzen, E., Appl. Phys Lett. 66, 2250 (1995).Google Scholar
26.Danishevskii, A.M., Shuman, V.B., Rogachev, A.Yu., and Ivanov, P.A., Semiconductors 29, 1106 (1995).Google Scholar
27.Mimura, H., Matsumoto, T., Kanemitsu, Y., Appl. Phys. Lett. 65, 3350 (1994).Google Scholar
28.Konstantinov, A., Harris, C.I., and Janzen, E., Appl. Phys. Lett. 65, 2699 (1994).Google Scholar
29.MacMillan, M.F., Devaty, R.P., Choyke, W.J., Goldstein, D.R., Spanier, J.E., and Kurtz, A.D., J. Appl. Phys. 80, 2412 (1996).Google Scholar
30.Kanemitsu, Y., Uto, H., Masumoto, Y., Matsumoto, T., Fugati, T., and Mimura, H., Phys. Rev. B 48, 2827 (1993).Google Scholar
31.Shor, J., Kurtz, A.D., Grimberg, I., and Weiss, B.Z., Osgood, R.M., accepted for publication in J. Appl. Phys.Google Scholar
32.Smith, R.L. and Collins, S.D., J. Appl. Phys. 71, R1 (1992).Google Scholar
33.von Munch, W. and Pfaffeneder, I., J. Electrochem. Soc. 122, 642 (1990).Google Scholar