Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T02:18:18.603Z Has data issue: false hasContentIssue false

Effects of Laterally and Vertically Neighboring Quantum Dots on Formation of a New Quantum Dot

Published online by Cambridge University Press:  10 February 2011

Bo Yang*
Affiliation:
Materials Reliability Division, National Institute of Standards and Technology Boulder, CO 80305
Vinod K. Tewary
Affiliation:
Materials Reliability Division, National Institute of Standards and Technology Boulder, CO 80305
*
*Corresponding author. Current address: Department of Mechanical and Aerospace Engineering, Florida Institute of Technology, Melbourne, FL32901. Tel: 321-674-8092; Fax: 321-674-8813; Electronic mail: [email protected].
Get access

Abstract

We apply the elastic-energy-release rate (EERR) to identify the favored location of quantum dot (QD) formation in the presence of a laterally or vertically neighboring grown QD on a linear anisotropic elastic substrate. The EERR is defined as the relaxation energy per unit volume of QD growth. Numerical results for InAs QDs on a GaAs(001) substrate are reported. It is shown that the presence of a laterally neighboring QD inhibits the driving force for the formation of a new QD. In contrast, the presence of a buried (vertically) neighboring QD enhances the driving force for the formation of a new QD at its favorable location.

(Publication of the National Institute of Standards and Technology, an agency of the US Government; not subject to copyright.)

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bimberg, D., Grundmann, M., and Ledentsov, N. N., Quantum Dot Heterostructures (John Wiley & Sons Ltd., New York, 1998).Google Scholar
2 Yang, B., J. Appl. Phys. 92, 3704 (2002).Google Scholar
3 Xie, Q., Madhukar, A., Chen, P., and Kobayashi, N., Phys. Rev. Lett. 75, 2542 (1995).Google Scholar
4 Darhuver, A. A., Holy, V., Stangl, J., Bauer, G., Krost, A., Heinrichsdorff, F., Grundmann, M., Bimberg, D., Ustinov, V. M., Kopev, P. S., Kosogov, A. O., and Werner, P., Appl. Phys. Lett. 70, 955 (1997).Google Scholar
5 Mateeva, E., Sutter, P., Bean, J. C., and Lagally, M. G., Appl. Phys. Lett. 71, 3233 (1997).Google Scholar
6 Schmidt, O. G., and Eberl, K., Phys. Rev. B 61, 13721 (2000).Google Scholar
7 Thanh, V. L., Yam, V., Nguyen, L. H., Zhang, Y., Boucaud, P., Debarre, D., and Bouchier, D., J. Vac. Sci. Technol. B 20, 1259 (2002).Google Scholar
8 Lita, B., Goldman, R. S., Phillips, J. D., and Bhattacharya, P. K., Appl. Phys. Lett. 74, 2824 (1999).Google Scholar
9 Sutter, P., Mateeva-Sutter, E., and Vescan, L., Appl. Phys. Lett. 78, 1736 (2001).Google Scholar
10 Shchukin, V. A., Bimberg, D., Malyshkin, V. G., and Ledentsov, N. N., Phys. Rev. B 57, 12262 (1998).Google Scholar
11 Ponchet, A., Lacombe, D., Durand, L., Alquier, D., and Cardonna, J.M., Appl. Phys. Lett. 72, 2984 (1998).Google Scholar
12 Tersoff, J., Teichert, C., and Lagally, M. G., Phys. Rev. Lett. 76, 1675 (1996).Google Scholar
13 Holy, V., Springholz, G., Pinczolits, M., and Bauer, G., Phys. Rev. Lett. 83, 356 (1999).Google Scholar
14 Springholz, G., Pinczolits, M., Holy, V., Zerlauth, S., Vavra, I., and Bauer, G., Phys. E 9, 149 (2001).Google Scholar
15 Yang, B., and Pan, E., J. Appl. Phys. 92, 3084 (2002).Google Scholar