Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T18:36:35.995Z Has data issue: false hasContentIssue false

Effects of Indium Preamorphization on Boron Implanted Silicon Annealed by RTA

Published online by Cambridge University Press:  28 February 2011

E. Ganin
Affiliation:
IBM T.J. Watson Research Center Yorktown Heights, NY 10598
G. Scilla
Affiliation:
IBM T.J. Watson Research Center Yorktown Heights, NY 10598
T. O. Sedgwick
Affiliation:
IBM T.J. Watson Research Center Yorktown Heights, NY 10598
G. A. Sai-Halasz
Affiliation:
IBM T.J. Watson Research Center Yorktown Heights, NY 10598
Get access

Abstract

Preamorphization by indium of boron implanted silicon layers has been studied as a means of reducing defects in the annealed and activated shallow junctions. The In preamorphized samples after RTP annealing at 950 to 1150°C show an absence of spanning dislocations. A 5 sec. anneal at 1100 °C results in the complete annihilation of residual dislocation loops at the original crystalline/amorphous (c/a) interface. The minimum dose to preamorphize Si with 200keV In was 5×1013/cm2. During annealing the In was found to localize at two peaks, one at the original c/a interface and the other closer to the surface, where In precipitation was observed.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sedgwick, T., Mat. Res. Soc. Symp. Proc. Vol.71, 403 (1986)Google Scholar
2. Maszara, W., Sadana, D.K., Rozgonyi, G.A., Sands, T., Washburn, J., and Wortman, J.J., Mat. Res. Soc. Symp. Proc. Vol.35, 277 (1985)Google Scholar
3. Calder, I.D., Naguib, H.M., Houghton, D., and Shepherd, F.R., Mat. Res. Soc. Symp. Proc., Vol.35, 353 (1985)Google Scholar
4. Sadana, D.K., Maszara, W., Wortman, J.J., Rozgonyi, G.A., and Chu, W.K., J. Electrochem. Soc., Vol.131, 943 (1984)CrossRefGoogle Scholar
5. Seidel, T.E., Maher, D.M., and Knoell, R., J. Electronic Mat. Vol.13, 523 (1984)Google Scholar
6. Delfino, M., Sadana, D.K., and Morgan, A.E., Appl. Phys. Lett. Vol.49 (10) ,575 (1986)Google Scholar
7. Sands, T., Washburn, J., Gronsky, R., Maszara, W., Sadana, D.K., and Rozgonyi, G.A., J. Electronic. Mat., Vol.13, 581, (1984)Google Scholar
8. Mader, S., in “Ion Implantation Science and Technology”, ed. Ziegler, J.F., Academic Press, 109 (1984)Google Scholar
9. Ganin, E., Sai-Halasz, G.A., and Sedgwick, T.O., to be publishedGoogle Scholar
10. Reihl, R.F., Smith, G.A., Katz, W., and Koch, E.F., Appl. Phys. Lett., Vol.42 (7), 575 (1983)Google Scholar
11. Katz, W., Smith, G.A., Reihl, R.F., and Koch, E.F., Mat. Res. Soc. Symp. Proc. vol. 23,299 (1984)CrossRefGoogle Scholar
12. Ziegler, J.F., “The Stopping and Range of Ions in Solids”,Pergamon Press, New York, (1985)Google Scholar
13. Trumbore, F.A., Bell Syst. Tech. J. Vol.39, 205 (1960)Google Scholar
14. Narayan, J., Holland, O.W., and Appleton, B.R., J. Vac. Sci. Technol. B1(4), 871 (1983)Google Scholar
15 Williams, J.S. and Elliman, R.G., Appl. Phys. Lett. Vol.40(3), 266 (198 B1(4), 871 (1983)Google Scholar