Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T20:20:22.655Z Has data issue: false hasContentIssue false

The Effects of Hydrogen Profiling and of Light-Induced Degradation on the Electronic Properties of Hydrogenated Nanocrystalline Silicon

Published online by Cambridge University Press:  01 February 2011

A.F. Halverson
Affiliation:
Department of Physics, University of Oregon, Eugene, OR 97403, U.S.A.
J.J. Gutierrez
Affiliation:
Department of Physics, University of Oregon, Eugene, OR 97403, U.S.A.
J.D. Cohen
Affiliation:
Department of Physics, University of Oregon, Eugene, OR 97403, U.S.A.
Baojie Yan
Affiliation:
United Solar Ovonic Corporation, 1100 W. Maple Road, Troy, MI 48084, U.S.A.
Jeffrey Yang
Affiliation:
United Solar Ovonic Corporation, 1100 W. Maple Road, Troy, MI 48084, U.S.A.
Subhendu Guha
Affiliation:
United Solar Ovonic Corporation, 1100 W. Maple Road, Troy, MI 48084, U.S.A.
Get access

Abstract

The electronic properties of hydrogenated nanocrystalline silicon (nc-Si:H) were studied using junction capacitance methods. Drive-level capacitance profiling (DLCP) measurements revealed significant differences for nc-Si:H layers deposited under constant hydrogen dilution compared to those deposited using hydrogen profiling, with lower DLCP densities in the latter case. Transient photocapacitance (TPC) measurements revealed the mixed-phase nature of these materials. It disclosed spectra that appeared quite microcrystalline-like at lower temperatures, but more similar to a-Si:H at higher temperatures where the minority carrier collection is higher in the nanocrystalline component of these samples. This then suppresses the TPC signal from this component compared to the a-Si:H component. In contrast, because transient photocurrent signals are enhanced by the additional minority carrier collection, those spectra appear microcrystalline like at all temperatures. We also investigated the effects of light-induced degradation in these devices. This caused a dramatic decrease in hole collection, similar to that caused by reducing the measurement temperature of the samples. However, the light exposure did not appear to increase the deep defect density (dangling bonds).

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Meier, J., Flückiger, R., Keppner, H., and Shah, A., J. Appl. Phys., 65, 860 (1994).Google Scholar
2See, for example, Tawada, Y., Yamagishi, H. and Yamamoto, K., Sol. Energy Mat. and Sol. Cells, 78, 647 (2003).10.1016/S0927-0248(02)00456-7Google Scholar
3 Michelson, C. E., Gelatos, A. V., and Cohen, J. D., J. Appl. Phys. Lett. 47, 412 (1985).10.1063/1.96129Google Scholar
4 Gelatos, A.V., Mahavadi, K.K., Cohen, J.D., and Harbison, J.P., Appl. Phys. Lett. 53, 403 (1988).10.1063/1.99892Google Scholar
5 Yan, B., Yue, G., Yang, J., Guha, S., Williamson, D. L., Han, D., and Jiang, C.-S., Appl. Phys. Lett. 85, 1955 (2004).10.1063/1.1788877Google Scholar
6 Gelatos, A.V., Cohen, J.D., and Harbison, J.P., Appl. Phys. Lett. 49, 722 (1986).10.1063/1.97579Google Scholar
7 Vaněček, M., Poruba, A., Remeš, Z., Beck, N., and Nesládek, M., J. Non-Cryst. Solids 227-230, 967 (1998).10.1016/S0022-3093(98)00202-6Google Scholar
8 Bronner, W., Mehring, M., and Brüggemann, R., Phys. Rev. B65, 165212 (2002).10.1103/PhysRevB.65.165212Google Scholar
9 Shah, A.V., Meier, J., Vallat-Sauvain, E., Wyrsch, N., Kroll, U., Droz, C., Graf, U., Sol. Energy Mat. Sol. Cells, 78, 469 (2003).10.1016/S0927-0248(02)00448-8Google Scholar
10 Torres, P., Meier, J, Flückiger, R., Kroll, U., Anna Selvan, J. A., Keppner, H., and Shah, A., J. Appl. Phys., 69, 2286 (1996).Google Scholar
11 Yan, B., Yue, G., Owens, J. M., Yang, J., and Guha, S., Appl. Phys. Lett. 85, 1925 (2004).10.1063/1.1790072Google Scholar