Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T08:53:21.299Z Has data issue: false hasContentIssue false

Effects of Heating Samples on the Extended Defect Generation During Pulsed Electron Beam Annealing of Silicon

Published online by Cambridge University Press:  22 February 2011

M. Pitaval
Affiliation:
Département de Physique des Matériaux, Université Claude Bernard – LYON I, 43 Boulevard du 11 Novembre 1918, 69622 VILLEURBANNE Cédex
M. Ambri
Affiliation:
Département de Physique des Matériaux, Université Claude Bernard – LYON I, 43 Boulevard du 11 Novembre 1918, 69622 VILLEURBANNE Cédex
M. Tholomier
Affiliation:
Département de Physique des Matériaux, Université Claude Bernard – LYON I, 43 Boulevard du 11 Novembre 1918, 69622 VILLEURBANNE Cédex
D. Barbier
Affiliation:
Département de Physique des Matériaux, Université Claude Bernard – LYON I, 43 Boulevard du 11 Novembre 1918, 69622 VILLEURBANNE Cédex Laboratoire de Physique de la Matiére, Institut National des Sciences Appliquées de LYON, 20 Avenue Albert Einstein, 69621 VILLEURBANNE Cédex
G. Chemisky
Affiliation:
Département de Physique des Matériaux, Université Claude Bernard – LYON I, 43 Boulevard du 11 Novembre 1918, 69622 VILLEURBANNE Cédex Laboratoire de Physique de la Matiére, Institut National des Sciences Appliquées de LYON, 20 Avenue Albert Einstein, 69621 VILLEURBANNE Cédex
A. Laugier
Affiliation:
Département de Physique des Matériaux, Université Claude Bernard – LYON I, 43 Boulevard du 11 Novembre 1918, 69622 VILLEURBANNE Cédex Laboratoire de Physique de la Matiére, Institut National des Sciences Appliquées de LYON, 20 Avenue Albert Einstein, 69621 VILLEURBANNE Cédex
Get access

Abstract

A non destructive SEM observation method has been applied to investigate the extended defects created by pulsed electron beam annealing of arsenic–implanted silicon. The defect study was performed on bevelled samples after irradiation using variable beam fluences for both a 20°C or a 450°C specimen starting temperature. Dislocation generation resulting in subgrain boundaries formation occurs during regrowth of the silicon layer which has been heated up to the melt point or higher. For the rather penetrating electron beam pulse used in this work the subgrain size and their depth extent depend on the beam fluence and the substrate temperature. For 450°C pre‐heated samples, annealing of the arsenic implant is possible without any stable extended defect creation using the 1.0 – 1.2 J.cm−2 fluence range.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Barbier, D., Laugier, A., Cachard, A., J. Phys. C5 Suppl. No 12, 43 (1982).Google Scholar
2.Pitaval, M., Tholomier, M., Ambri, M., Barbier, D., Chemisky, G., Microscopy of Semiconducting Materials (1983) Conf. Series No 67, The Institute of Physics, pp. 173178.Google Scholar
3.Tholomier, M., Pitaval, M., Ambri, M., Barbier, D., Laugier, A., J. Appl. Phys. 54, 3, 15881594 (1983).Google Scholar
4.Morin, P., Pitaval, M., Besnard, D., Fontaine, G., Phil. Mag. A, 40, 511 (1979).Google Scholar
5.Chemisky, G., Barbier, D., Laugier, A., J. Cryst. Growth (to be published).Google Scholar
6.Pitaval, M., Morin, P., Baudry, J., Fontaine, G., J. Microsc. Spectrosc. Electron, 2, 185186 (1977).Google Scholar
7.Barbier, D., Baghdadi, M., Laugier, A., Cachard, A., Proc. MRS Symp. Laser Solid Interactions and Transient Thermal Processing Materials, 13, 419, (Elsevier Sc. 1983).Google Scholar
8.Van Essen, C., Schulson, E.M., Donaghay, R.H., J. Mat. Sc. 6, 213217 (1971).Google Scholar
9.Foti, G., Grimaldi, M.G., Cullis, A.G., Porte, J.M., Chew, N.G., Microscopy of Semiconducting Mat. (1981) Conf. Series No 60, The Institute of Physics, pp. 7984.Google Scholar
10.Schoen, N.C., J. Appl. Phys. 51, 9, 47484751 (1981).Google Scholar