Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:40:07.169Z Has data issue: false hasContentIssue false

Effects of Gas Environments on Porous Silicon Photoluminescence

Published online by Cambridge University Press:  10 February 2011

G. Di Francia
Affiliation:
ENEA Centro Ricerche Portici, 1-80055 Portici, (Italy)
V. La Ferrara
Affiliation:
INFM Dipartimento di Scienze Fisiche, Mostra d'Oltremare, 80100 Napoli, (Italy)
L. Lancellotti
Affiliation:
INFM Dipartimento di Scienze Fisiche, Mostra d'Oltremare, 80100 Napoli, (Italy)
L. Quercia
Affiliation:
ENEA Centro Ricerche Portici, 1-80055 Portici, (Italy)
T. Fasolino
Affiliation:
ENEA Centro Ricerche Portici, 1-80055 Portici, (Italy)
Get access

Abstract

The photoluminescence response of a series of porous silicon samples, obtained by electrochemical etching of n-type CZ-silicon, has been recorded in various gas environments. A quenching is reported when porous silicon is in the presence of an oxidising ambient (dry air or acetone vapours in dry air). Process reversibility depends on the duration of laser illumination. Quenching is also recorded if porous silicon is in the presence of acetone vapours in nitrogen ambient, where complete reversibility is however shown. Moreover, the peak wavelength is red shifted in dry air and blue shifted in acetone vapours. Irreversible quenching is related to the growth of a thin oxide layer on the emitting nanostrucures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Harper, J. and Sailor, M., Langmuir 13, 4652 (1997).Google Scholar
2. Ito, T. and Iraki, A., Journal of Luminescence 57, 331 (1993).Google Scholar
3. Zhang, L., Coffer, J.L., Gnade, B.E., Xu, D. and Pinizzotto, R.F., Journal of Applied Physics 77, 5936 (1995).Google Scholar
4. Wolkin, M.V., Jorne, J., Fauchet, P.M., Allan, G. and Delrue, C., Physical Review Letters 82. 197 (1999).Google Scholar
5. Kelly, M.T., Chun, J.K.M. and Bocarsly, A.B., Nature 382, 214 (1996).Google Scholar
6. Suemune, I., Noguchi, N. and Yamanishi, M., Jpn. J. Appl. Physics 31, L494 (1992).Google Scholar
7. Tischler, M.A., Collins, R.T., Tsang, J.C., Stathis, J.H., Batstone, J.L. and Zollner, S. in Optical Characteristics of porous silicon, edited by Iyer, S.S, Collins, R.T. and Canham, L.T. (Mater. Res. Soc. Proc. 256, Pittsburgh, PA, 1991) pp. 189195.Google Scholar
8. Francia, G. Di, ladonisi, G., Maddalena, P., Migliaccio, M., Ninno, D. and Santamato, E.. Optics Communications 127, 44 (1995).Google Scholar
9. Xu, Z.Y., Gal, M. and Gross, M., Applied Physics Letters 60, 1375 (1992).Google Scholar
10. Jordan, P. C. in Chemical Kinetics and Transport, edited by Jordan, P. C. (Plenum Press, New York, NY, 1981) pp. 178183.Google Scholar