No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Bond strength between three dimensional micro-sized cylindrical patterns and Si substrate has been evaluated to clarify the effects of the cylinder length vs. diameter ratio, i.e. the aspect ratio, on the bond strength. Cylindrical shape was employed for avoiding ambiguity of loading point under bend conditions. Multiple cylindrical specimens of an epoxy type photoresist, SU-8 with various lengths were fabricated on a silicon substrate under the same photolithographic condition. Bond strength between micro-sized SU-8 and Si substrate under bend loading mode was measured by a mechanical testing machine for micro-sized materials. The maximum bend moment is 9.6 × 10−6 Nm in average and lineally increases with increasing the aspect ratio. On the other hand, the maximum load, i.e. maximum shear load is 106 mN in average and almost constant with increasing aspect ratio. This result suggests that the shear stress near the interface may cause the initiation of delamination. This phenomenon is discussed with three dimensional fracture observation and quantitative analysis of the line profile around the initiation site by AFM.