Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:34:49.106Z Has data issue: false hasContentIssue false

Effective Jet Printing of Organic Semiconducting Polymers

Published online by Cambridge University Press:  15 February 2011

Kateri E. Paul
Affiliation:
Palo Alto Research Center (PARC) 3333 Coyote Hill Road Palo Alto, CA 94304
William S. Wong
Affiliation:
Palo Alto Research Center (PARC) 3333 Coyote Hill Road Palo Alto, CA 94304
Steven E. Ready
Affiliation:
Palo Alto Research Center (PARC) 3333 Coyote Hill Road Palo Alto, CA 94304
Get access

Abstract

Organic semiconducting polymers are an attractive alternative to conventional inorganic materials because of the ability to process the polymers from solution and apply them to flexible substrates using lower temperatures and at a lower cost. Direct writing of these materials has the potential to reduce processing steps and material waste. While printing of semiconductors for organic light emitting diodes (OLEDs) is well known, little has been reported on printing semiconductors for organic thin-film transistors (OTFTs). We have developed a process to fabricate TFTs and arrays using jet printing to eliminate all photolithographic patterning. Active layers of the polymeric semiconductor are jet-printed for the active layer. Many factors are found to affect the characteristics of devices having a jet-printed semiconductor layer, including the substrate temperature, surface energy, device geometry, and drop size and overlap. We will discuss the printing conditions that lead to performance similar to that of devices fabricated by spin coating.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bao, Z., Feng, Y., Dodabalapur, A., Raju, V. R., and Lovinger, A. J., Chem. Mater. 9, 1299 (1997).Google Scholar
[2] Garnier, F., Hajlaoui, R., Yassar, A., and Srivastava, P., Science 265, 1684 (1994).Google Scholar
[3] Blanchet, G. B., Loo, Y.-L., Rogers, J. A., Gao, F., and Fincher, C. R., Appl. Phys. Lett. 82 (2003).Google Scholar
[4] Bharathan, J. and Yang, Y., Appl. Phys. Lett. 72, 2660 (1998).Google Scholar
[5] Speakman, S. P., Rozenberg, G. G., Clay, K. J., Milne, W. I., Ille, A., Gardner, I. A., Bresler, E., and Steinke, J. H. G., Organic Electronics 2, 65 (2001).Google Scholar
[6] Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W., and Woo, E. P., Science 290, 2123 (2000).Google Scholar
[7] Wong, W. S., Ready, S., Matuziak, R., White, S. D., Lu, J.-P., Ho, J., and Street, R. A., Appl. Phys. Lett. 80, 610 (2002).Google Scholar
[8] Elrod, S. A., Hadimioglu, B., Khuri-Yakub, B. T., Rawson, E. G., Richley, E., Quate, C. F., Mansour, N. N., and Lundgren, T. S., J. Appl. Phys. 65, 3441 (1989).Google Scholar
[9] Wasserman, S. R., Tao, Y.-T., and Whitesides, G. M., Langmuir 5, 1074 (1989).Google Scholar
[10] Salleo, A., Chabinyc, M. L., Yang, M. S., and Street, R. A., Appl. Phys. Lett. 81, 4383 (2002).Google Scholar
[11] Grundlach, D. J., Kuo, C. S., Sheraw, C. D., Nichols, J. A., and Jackson, T. N., Proceedings of the SPIE - The International Society for Optical Engineering 4466, 54 (2001).Google Scholar
[12] Sirringhaus, H., Wilson, R. J., Friend, R. H., Inbasekaran, M., Wu, W., Woo, E. P., Grell, M., and Bradley, D. D. C., Appl. Phys. Lett. 77, 406 (2000).Google Scholar