Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T18:03:38.779Z Has data issue: false hasContentIssue false

Effective Conductivity Modelling of Polycrystalline ZnO Thin Films

Published online by Cambridge University Press:  15 February 2011

M. Robles
Affiliation:
Facultad de Ciencias, UAEMor., Av. Universidad 1001, Chamilpa 62210, Cuernavaca, Morelos, MÉXICO
J. Tagüeña-Martínez
Affiliation:
Laboratorio de Energía Solar IIM-UNAM, A.P. 34, 62580 Temixco, Morelos, MÉXICO
J. A. Del Río
Affiliation:
Laboratorio de Energía Solar IIM-UNAM, A.P. 34, 62580 Temixco, Morelos, MÉXICO
Get access

Abstract

Chemically deposited thin films have multiple applications, in particular for low cost solar cells production. However, due to their inhomogeneous structure, it is very difficult to predict their physical properties. In this work we present a mean field approximation to model the effective electrical conductivity of the polycrystalline ZnO chemical deposited thin films. Our model considers elliptical inclusions randomly distributed in a matrix. We compare with the experimental results of two different deposition methods: spray pyrolysis [1] and successive ion layer adsorption and reaction (SILAR) [2]. Supported by the structural information of these samples, we select the elliptical geometrical parameters. We obtain a good fit of the experimental measurements with our calculation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] J, Aranovich, A., Ortiz, R.H., Bube, Vac. Sci. Technol. 16 (1979)Google Scholar
[2] M., Robles “Propiedades ópticas y eléctricas de pelfculas delgadas de ZnO depositadas por SILAR”, B. Sc. Thesis, Science Faculty UNAM, México (1991).Google Scholar
[3] Nair, P.K., J. Campos, M.T.S. Nair S. Semicond.Sci. Technol. 3 p. 134145 (1988).Google Scholar
[4] Chopra, K.L. and R.Daas, S., “Thin Films Solar Cells”, Plenum Press N. Y. and London (1983)Google Scholar
[5] Pantelides, S.T., Physics Today 45, p.67 (1992).Google Scholar
[6] J., Keller B. J. Math. Phys. 5 p. 548549 (1964).Google Scholar
[7] K., Mendelson S. J. Appl. Phys. 46, p. 917918 (1974)Google Scholar
[8] W., Xia, M.F., Thorpe, Phys. Rev. A 38 p. 26502656 (1988)Google Scholar
[9] M.F., Thorpe, Proc. R. Soc. Lond. A 437 p. 215227 (1992)Google Scholar
[10] Thorpe, M. F., Djorjevic, B.R., Hetherrington, J., J. Proc. of ETOPIM 3 p. 6578 (1993)Google Scholar
[11] E., Kladis “Current Topics in Material Science”, Volume 7. North Holland Publishing Company (1981).Google Scholar