Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:43:44.415Z Has data issue: false hasContentIssue false

Effect of van der Waals Interaction Strength and Nanocluster Size on the Dynamical and Mechanical Properties of 1,4-cis-polybutadiene Melts

Published online by Cambridge University Press:  10 February 2012

Canan Atilgan
Affiliation:
Faculty of Engineering and Natural Science, Sabanci University, Istanbul, Turkey
Ibrahim Inanc
Affiliation:
Faculty of Engineering and Natural Science, Sabanci University, Istanbul, Turkey
Ali Rana Atilgan
Affiliation:
Faculty of Engineering and Natural Science, Sabanci University, Istanbul, Turkey
Get access

Abstract

Using molecular dynamics simulations, we have investigated the effect of embedding nanoclusters of radius 3-7 Å on the dynamical and mechanical properties of 1,4-cispolybutadiene melts. To see the effect of polymer-nanocluster interaction strength on the bulk modulus, the van der Waals interactions (vdW) between the polymer chain and nanocluster have been varied from weak to very stong while keeping polymer-polymer and nanoclusternanocluster interactions constant. The modulus depends on the interaction strength, but not on nanocluster size. Residence time of chains on the surface of the nanocluster (τr) has an increasing trend that reaches to a plateau as the vdW strength is increased. τr also doubles from 100 ps to 200 ps as the nanocluster size is increased from 3 to 7 Å. Our findings give clues on how the properties of polymeric materials may be controlled by nanoparticles of different chemistry and size.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Giannelis, E. P., Advanced Materials 8 (1996) 29-&.Google Scholar
[2] Komarneni, S., Journal of Materials Chemistry 2 (1992) 12191230.Google Scholar
[3] Khrisnamoorti, R., Vaia, R. A., Polymer Nanocomposites: synthesis, characterization, and modeling, American Chemical Society, Washington DC, 2001.Google Scholar
[4] Polymer Nanocomposites Handbook, CRC Press, Taylor & Francis Group, Florida, 2010.Google Scholar
[5] Vilgis, T. A., Polymer 46 (2005) 42234229.Google Scholar
[6] Allegra, G., Raos, G., Vacatello, M., Progress in Polymer Science 33 (2008) 683731.Google Scholar
[7] Picu, C. R., Keblinski, P., Modeling of Nanocomposites, Wiley-VCH, Weinheim, 2003.Google Scholar
[8] Starr, F. W., Schroder, T. B., Glotzer, S. C., Macromolecules 35 (2002) 44814492.Google Scholar
[9] Sen, S., Thomin, J. D., Kumar, S. K., Keblinski, P., Macromolecules 40 (2007) 40594067.Google Scholar
[10] Smith, G. D., Bedrov, D., Li, L. W., Byutner, O., Journal of Chemical Physics 117 (2002) 94789489.Google Scholar
[11] Vacatello, M., Macromolecules 34 (2001) 19461952.Google Scholar
[12] Zhang, Q., Archer, L. A., Journal of Chemical Physics 121 (2004) 1081410824.Google Scholar
[13] Long, D., Sotta, P., Macromolecules 39 (2006) 62826297.Google Scholar
[14] Raos, G., Macromolecular Theory and Simulations 12 (2003) 1723.Google Scholar
[15] Wagner, H. D., Chemical Physics Letters 361 (2002) 5761.Google Scholar
[16] Gusev, A. A., Macromolecules 39 (2006) 59605962.Google Scholar
[17] Edwards, D. C., Journal of Materials Science 25 (1990) 41754185.Google Scholar
[18] Kanaya, T., Kawaguchi, T., Kaji, K., Physica B-Condensed Matter 182 (1992) 403408.Google Scholar
[19] Wales, D. J., The Cambridge Cluster Database, in.Google Scholar
[20] Gee, R. H., Boyd, R. H., Journal of Chemical Physics 101 (1994) 80288038.Google Scholar
[21] Baysal, C., Erman, B., Bahar, I., Laupretre, F., Monnerie, L., Macromolecules 30 (1997) 2058.Google Scholar
[22] Ghirelli, F., Leckner, B., Chemical Engineering Science 59 (2004) 513523.Google Scholar
[23] Theodorou, D. N., Suter, U. W., Macromolecules 19 (1986) 139154.Google Scholar
[24] Paul, D. R., Robeson, L. M., Polymer 49 (2008) 31873204.Google Scholar