Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:29:45.305Z Has data issue: false hasContentIssue false

Effect of the Sol-Gel Synthesis Parameters on the Incorporation of an Anti-inflammatory Drug in a Ceramic Material

Published online by Cambridge University Press:  17 March 2011

Aracely Hernandez
Affiliation:
Fac. de Ciencias Químicas, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Cd. Universitaria, San Nicolás de los Garza, N.L., 66400, Mexico
Patricia Esquivel-Ferriño
Affiliation:
Fac. de Ciencias Químicas, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Cd. Universitaria, San Nicolás de los Garza, N.L., 66400, Mexico
Idalia Gomez
Affiliation:
Fac. de Ciencias Químicas, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Cd. Universitaria, San Nicolás de los Garza, N.L., 66400, Mexico
Lucia Cantu
Affiliation:
Fac. de Ciencias Químicas, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Cd. Universitaria, San Nicolás de los Garza, N.L., 66400, Mexico
Get access

Abstract

In the present work, sol-gel method was used to incorporate in a ceramic material a non steroidal anti-inflammatory drug (piroxicam) as model drug. The incorporation of the drug in the SiO2 network was carried out at different sol-gel synthesis parameters, such as pH (3 and 5) and the alkoxide/water ratio (1:6 and 1:8). The biomaterial obtained was analyzed by thermal analysis TGA-DTA, infrared spectroscopy (FTIR), Scanning Electronic Microscopy (SEM) and X-ray diffraction (XRD); specific surface area and porosity were analyzed from nitrogen adsorption isotherm. Better drug incorporation into the material was achieved at the synthesis conditions of pH 5 and 1:6 alkoxide/water molar ratio.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kortesuo, P., Aholab, M., Kangasb, M., Jokinenb, M., Leinoa, T., Vuorilehtoa, L., Laaksoa, S., Kiesvaaraa, J., Yli-Urpob, A., Marvolac, M., Biomaterials 23, 27952801, (2002).Google Scholar
2. Böttcher, H., Slowik, P. and Süß, W., J. of Sol-Gel Science and Technology 13, 277281 (1998)Google Scholar
3. Sheth, A. R., Bates, S., Muller, F. X., and Grant, D. J. W., Crystal Growth & Design 4, 10911098 (2004)Google Scholar
4. Cso'ka, G., Balogh, E., Marton, S., Farkas, E., and Racz, I., Drug Development and Industrial Pharmacy, 25, 813816 (1999)Google Scholar
5. Lopez, T., Herrera, L., Mendez-Vivar, J., Bosch, P., Gomez, R., Gonzalez, R.D., J. of non-crystalline solids 147, 773777, (1992).Google Scholar
6. Lopez, T., Moran, M., Navarrete, J., Herrera, L., Gomez, R., J. of non-crystalline solids 147, 753757, (1992).Google Scholar
7. Cini, R., Giorgi, G., Cinquantini, A., Rossi, C., and Sabat, M., Inorg. Chem., 29,Google Scholar
8. Sheth, A. R., Lubach, J. W., Munson, E. J., Muller, F. X. and Grant, D. J. W., J. Am. Chem. Soc., 127, 66416651 (2005).Google Scholar
9. Jeffrey, Brinker C. and George, W. Scherer, Sol-gel Science: The physics and chemistry of sol-gel processing. Academic Press New York, N. Y., USA. (1990), p. 103 Google Scholar
10. Kortesuo, Pirjo. Sol-gel derived silica gel monoliths and microparticles as carrier in controlled drug delivery in tissue administration. (Ed. Oy, Painosalama, Turku, Finland 2001), p. 12 Google Scholar