Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:28:39.240Z Has data issue: false hasContentIssue false

Effect of the phase composition and crystal size of sol-gel TiO2 nanoparticles on the NOx photodecomposition

Published online by Cambridge University Press:  05 August 2011

R. Carrera
Affiliation:
ESIA-IPN, 07738 D.F., México
S. Castillo
Affiliation:
IMP, 07730 D.F., México
N. Castillo
Affiliation:
CINVESTAV, 07738 D.F., México Email: [email protected]
Get access

Abstract

TiO2 nanoparticles with interesting physicochemical properties were synthesized by means of the sol-gel method and acid hydrolysis. The obtained nanoparticles were characterized by the X ray diffraction (XRD), Rietveld refinement, Brunauer Emmett Teller (BET) and transmission electron microscopy (TEM) techniques, and tested in the photodecomposition of NOx. The NOx decomposition degree reached by the sol-gel TiO2 nanoparticles was directly proportional to the brookite mass fraction, but inversely proportional to both the anatase mass fraction and the crystal size.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Carp, O., Huisman, C. L., Reller, A., Prog. Solid State Chem. 32, 33 (2004).Google Scholar
2. Yu, J. C., Yu, J. G., Ho, W. K., Zhao, J. C., Chem. Commun. 19, 1942 (2001).Google Scholar
3. Venkatachalam, N., Palanichamy, M., Murugesan, V., Mater. Chem. Phys. 104, 454 (2007).Google Scholar
4. Mahdjoub, N., Allen, N., Kelly, P., Vishnyakov, V., J. Photochem. Photobiol. A 210, 125 (2010).Google Scholar
5. Carbajal, R., Phys. B 192, 55 (1993).Google Scholar
6. Orlhac, X., Fillet, C., Deniard, P., Dulac, A. M., Brec, R., J. Appl. Cryst. 34, 114 (2001).Google Scholar
7. Reid, J. W., Hendry, J. A., Appl. Cryst. 39, 536 (2006).Google Scholar
8. Castillo, S., Morán-Pineda, M., Molina, V., Gómez, R., López, T., Appl. Catal. B 15, 203 (1998).Google Scholar
9. Nádia, R. C., Machado, F., Santana, V. S., Catal. Today 107–108, 595 (2005).Google Scholar
10. Zhu, K. R., Zhang, M. S., Hong, J. M., Yin, Z., Mater. Sci. Eng. A 403, 87 (2003).Google Scholar
11. Patil, A. J., Shinde, M. H., Potdar, H. S., Deshpande, S. B., Mater. Chem. Phys. 68, 7 (2001).Google Scholar
12. Carrera, R., Vázquez, A. L., Arce, E., Moran-Pineda, M., Castillo, S., J. Alloys Compd. 434 (2007).Google Scholar
13. López, T., Gómez, R., Sánchez, E., Tzompantzi, F., J. Sol-Gel Sci. Technol. 22, 99 (2001).Google Scholar
14. Boujday, S., Wünsch, F., Portes, P., Bocquet, J. F., Colbeau-Justin, C., Sol. Energy Mater. Sol. Cells 83, 421 (2004).Google Scholar