Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T09:38:45.187Z Has data issue: false hasContentIssue false

Effect of the Microstructure on the Fatigue Strength of a TiAl Intermetallic Alloy Produced by Additive Manufacturing

Published online by Cambridge University Press:  02 February 2015

M. Filippini
Affiliation:
Politecnico di Milano, Dipartimento di Meccanica, Via La Masa 1, 20156 Milano, Italy.
S. Beretta
Affiliation:
Politecnico di Milano, Dipartimento di Meccanica, Via La Masa 1, 20156 Milano, Italy.
C. Içöz
Affiliation:
Politecnico di Milano, Dipartimento di Meccanica, Via La Masa 1, 20156 Milano, Italy.
L. Patriarca
Affiliation:
Politecnico di Milano, Dipartimento di Meccanica, Via La Masa 1, 20156 Milano, Italy. Dept. Mech. Science and Engng, University of Illinois at Urbana-Champaign, 1206 W. Green St., Urbana, IL 61801, U.S.A.
Get access

Abstract

In this work we examine a Ti-48Al-2Cr-2Nb alloy obtained with an additive manufacturing technique by Electron Beam Melting (EBM) by conducting monotonic and cyclic loading experiments both on tension and compression samples for investigating the influence of the microstructure in strain accumulation process by fatigue loading. The residual strain maps corresponding to different applied stress levels, number of cycles and microstructures are obtained through the use of high-resolution Digital Image Correlation (DIC). The strain maps were overlaid with the images of the microstructure and detailed analyses were performed to investigate the features of the microstructure where high local strain heterogeneities arise. Such experiments, conducted ex-situ at room temperature, allow to characterize the effect of different microstructures on the strain accumulation process, and to clearly identify the role of the microstructural features of this TiAl intermetallic alloy on the fatigue initiation process.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chan, K. S., Shih, D. S., Metal. Mater. Trans. A 29, 7387 (1998).CrossRefGoogle Scholar
Gloanec, A.-L., Henaff, G., Jouiad, M., Bertheau, D., Belaygue, P., Grange, M., Scripta Mat. 52, 107111, (2005).CrossRefGoogle Scholar
Sutton, M. A., Orteu, J.-J., Schreier, H. W., Image Correlation for Shape, Motion and Deformation Measurements (Springer-Verlag, Heidelberg, 2009).Google Scholar
Andersson, L.-E., Larsson, M., Patent WO 2001/081031 A1 (27 April 2001).Google Scholar
Biamino, S., Penna, A., Ackelid, U., Sabbadini, S., Tassa, O., Fino, P., Pavese, M., Gennaro, P., Badini, C., Intermetallics 19, 776781 (2011).CrossRefGoogle Scholar
Carroll, J., Abuzaid, W., Lambros, J., Sehitoglu, H., Rev. Sci. Instr. 81, 083703 (2010).CrossRefGoogle Scholar
Baeslack, W. A. III, McQuay, P. A., Lee, D. S., Fletcher, E. D., Mat. Char. 31, 197207 (1993).CrossRefGoogle Scholar
Zupan, M., Hemker, K. J., Acta Mater. 51, 62776290 (2003).CrossRefGoogle Scholar
Filippini, M., Beretta, S., Patriarca, L., Pasquero, G., Sabbadini, S., Proc. Eng. 10, 36773682, (2011).CrossRefGoogle Scholar
Appel, F., Paul, J. D. H., Oehring, M., Gamma Titanium Aluminide Alloys: Science and Technology (Wiley-VCH Verlag GmbH & Co., Weinheim, Germany, 2011).CrossRefGoogle Scholar
Bieler, T. R., Eisenlohr, P., Roters, F., Kumar, D., Mason, D. E., Crimp, M. A., Raabe, D., Int. J. Plast. 25 16551683, (2009).CrossRefGoogle Scholar
Dahar, M. S., Seifi, S. M., Bewlay, B. P., Lewandowski, J. J, Intermetallics 57, 7382, (2015).CrossRefGoogle Scholar