Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:16:35.782Z Has data issue: false hasContentIssue false

Effect of Surface Coverage on Porous Silicon Photoluminescence: Transmission FTIR Studies

Published online by Cambridge University Press:  15 February 2011

M. B. Robinson
Affiliation:
Dept. of Chemistry and Biochemistry, Univ. of Colorado, Boulder, CO. 80309
A. C. Dillon
Affiliation:
Dept. of Chemistry and Biochemistry, Univ. of Colorado, Boulder, CO. 80309
D. R. Haynes
Affiliation:
Dept. of Chemistry and Biochemistry, Univ. of Colorado, Boulder, CO. 80309
S. M. George
Affiliation:
Dept. of Chemistry and Biochemistry, Univ. of Colorado, Boulder, CO. 80309
Get access

Abstract

Transmission Fourier Transform Infrared (FTIR) Spectroscopy was utilized to monitor the effect of surface coverage on photoluminescent porous silicon. These experiments were performed in situ in an ultrahigh vacuum (UHV) chamber to correlate simultaneously surface coverage and photoluminescence intensity. The goal of these FTIR and photoluminescence studies was to clarify the mechanism of the photoluminescence from porous silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Uhlir, A., Bell Syst. Tech. J. 35, 333 (1956).Google Scholar
2. Turner, D.R., J. Electrochem. Soc. 105, 402 (1958).CrossRefGoogle Scholar
3. Chuang, S.F., Collins, S.D. and Smith, R.L., Appl. Phys. Lett. 55 675 (1989).Google Scholar
4. Bomchil, G., Herino, R., Barla, K. and Pfister, J.C., J. Electrochem. Soc. 130 1611 (1983).Google Scholar
5. Hardeman, R.W., Beale, M.I.J., Gasson, D.B., Keen, J. M., Pickering, C. and Robbins, D.J., Surf. Sci. 152/153 1051 (1985).Google Scholar
6. Barla, K., Herino, R., Bomchil, G., Pfister, J.C. and Freund, A., J. Cryst. Growth 68 727 (1984).CrossRefGoogle Scholar
7. Gupta, P., Colvin, V.L. and George, S.M., Phys. Rev. L 7, 8234 (1988).Google Scholar
8. Gupta, P., Dillon, A.C., Bracker, A.S. and George, S.M., Surf. Sci. 245, 260 (1991).Google Scholar
9. Dillon, A.C., Gupta, P., Robinson, M.B., Bracker, A.S. and George, S.M., J. Vac. Sci. Technol. A 9, 2222 (1991).Google Scholar
10. Dillon, A.C., Robinson, M.B., Han, M.Y. and George, S.M. J. Electrochem. Soc. (in press).Google Scholar
11. Canham, L.T., Appl. Phys. Lett. 56, 1046 (1990).CrossRefGoogle Scholar
12. Lehmann, V. and Gosele, U., Appl. Phys. Lett. 58 856 (1991).Google Scholar
13. Halimaoui, A., Oules, C., Bomchill, G., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M. and Muller, F., Appl. Phys. Lett. 59, 304 (1991).Google Scholar
14. Cullis, A.G. and Canham, L.T., Nature 353, 335 (1991).Google Scholar
15. Bsiesy, A., Vial, J.C., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestain, R., Wasiela, A., Halimaoui, A. and Bomchil, G., Surf. Sci. 254, 195 (1991).Google Scholar
16. Tsai, C., Li, K.H., Sarathy, J., Shih, S., Campbell, J.C., Hance, B.K. and White, J.M.(submitted Appl. Phys. Lett.).Google Scholar
17. Prokes, S.M., Glembocki, O.J., Bermudez, V.M., Kaplan, R., Friedersdorf, L.E. and Searson, P.C. (submitted to Phys. Rev. Lett.)Google Scholar