No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Highly (100)-oriented Mn-doped barium strontium stannate titanate thin films of a nominal composition (Ba0.7Sr0.3)(Sn0.2Ti0.8-xMnx)O3 (Mn-BSSnT) (x=0%, 0.2%, 0.4%, 0.6% and 1%), were fabricated by pulsed laser deposition on (La0.7Sr0.3)O3/LaAlO3 substrates. Both elastic strain and inhomogeneous strain were measured by x-ray diffraction techniques. Relationship between the strain and the dielectric properties of the Mn-BSSnT thin films were systematically investigated as a function of the Mn content. Our results show that the tunability is dependent upon not only the elastic strain induced by thermal expansion coefficient and lattice mismatch between the thin film and the substrate but also inhomogeneous strain induced by Mn doping. The tunability decreases with increasing inhomogeneous strain and can be easily manipulated by changing Mn doping content, which is beneficial to real tunable device applications.