Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T08:45:36.882Z Has data issue: false hasContentIssue false

The Effect of Starting Silicon Crystal Structure on Photoluminescence Intensity of Porous Silicon

Published online by Cambridge University Press:  28 February 2011

W. B. Dubbelday
Affiliation:
Naval Command, Control, and Ocean Surveillance Center, RDT&E Division (NRaD), Code 553, San Diego, CA 92152-7633 Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093-0407
S. D. Russell
Affiliation:
Naval Command, Control, and Ocean Surveillance Center, RDT&E Division (NRaD), Code 553, San Diego, CA 92152-7633
K. L. Kavanagh
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093-0407
Get access

Abstract

In previous work we reported that porous silicon (PS) films formed using a dilute HF:HNO3 chemical etch on polycrystalline, implant damaged single crystal, or amorphous starting material have luminescent characteristics that differ from PS fabricated on single crystal silicon1. Polycrystalline and implant damaged porous silicon exhibits brighter luminescence compared to single crystal silicon etched under identical conditions. No photoluminescence is detected from the porous amorphous silicon. In this work these effects are examined using HF:NaNO2 solutions with freely available NO2. The accelerated etching effects from work damage are reduced, and the PS from polycrystalline and implant damaged silicon luminesce with the same intensity as the PS from single crystal silicon. Again, etched amorphous silicon does not luminesce. TEM and EDX porosity measurements are used to determine the differences in structure and etching characteristics between the luminescent and non-luminescent materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Dubbelday, W. B., Szaflarski, D. M., Shimabukuro, R. L. and Russell, S. D., Mat. Res Soc. Svmp. Proc, 283, 161 (1993).Google Scholar
2 Canham, L. T., Appl. Phys. Lett., 57, 1046 (1990).Google Scholar
3 Lehman, V. and Gosele, U., Appl. Phys. Lett., 58, 856, (1991).Google Scholar
4 Brandt, M. S., Fuchs, H. D., Stutzmann, M., Weber, J. and Cardona, M., Solid State Communications, 81(4), 307, (1992).Google Scholar
5 Milewski, P. D., Lichtenwalner, D. J., Mehta, P., Kingon, A. I., Zhang, D., Kolbas, R. M., Journal of Electronic Materials, 23(1), 57 (1994).Google Scholar
6 Koch, F., Petrova-Koch, V. and Muschik, T., Journal of Luminescence, 57, 271 (1993).Google Scholar
7 Fathauer, R., George, T., Ksendov, A. and Vasquez, R., Appl. Phys. Lett., 60, 995 (1992).Google Scholar
8 Sarathy, J., Shih, S., Jung, K., Tsai, C., Li, K.-H., Kwong, D.-L., Campbell, J. C., Yau, S.-L. and Bard, A. J., Appl. Phys. Lett., 60, 1532 (1992).Google Scholar
9 Archer, R. J., J. Phys Chem. Solids, 14, 104 (1960).Google Scholar
10 Beale, M. I. J., Benjamin, J. D., Uren, M. J., Chew, N. G. and Cullis, A. G., J. of Crystal Growth, 75, 408 (1986).Google Scholar
11 Garcia, G. A. and Reedy, R. E., Electronic Letters, 22, 537 (1986).Google Scholar
12 Brunauer, S., Emmett, P. H. and Teller, E., J. Am. Chem Soc., 59, 1553 (1938).Google Scholar
13 Pike, W. T., Ksendzov, A., Fathauer, R. W. and George, T., J. Vac. Sci. Technol. B, 11(4), 1401 (1993).Google Scholar
14 Robbins, H. and Schwartz, B., J. Electrochemical Society, 106(6), 505 (1959).Google Scholar
15 Ghandi, S. K., VLSI Fabrication Principles (Wiley, New York, 1983), pp.478482.Google Scholar
16 Guyader, P., Joubert, P., Guendouz, M., Neau, C. and Sarret, M., Appl. Phys. Let., 65(14), 1787 (1994).Google Scholar
17 Xie, X. S., Allen, E. V., Holtom, G. R., Dunn, R. C., SPlEProceedings 1994, 2137 (1994).Google Scholar