Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T09:20:58.226Z Has data issue: false hasContentIssue false

Effect of SPS processing temperature on the microstructure and properties of a Ti49Al47Cr2Nb2 alloy

Published online by Cambridge University Press:  26 February 2011

Alain Couret
Affiliation:
[email protected], CNRS, CEMES, 29 Rue J. marvig, BP 94347, Toulouse, 31400 Cedex 4, France, 33 5 62 25 78 71, 33 5 62 25 79 99
Guy Molénat
Affiliation:
[email protected], CEMES/CNRS, BP 94347, Toulouse Cedex4, 31 055, France
Jean Galy
Affiliation:
[email protected], CEMES/CNRS, BP 94347, Toulouse Cedex4, 31 055, France
Marc Thomas
Affiliation:
[email protected], DMMP/ONERA, BP 72, Chatillon Cedex, 92332, France
Get access

Abstract

The sintering of TiAl alloys by the Spar Plasma Sintering (SPS) technique is investigated in the present paper. Compactions are conducted between 1100°C and 1225°C on a Ti49Al47Cr2Nb2 powder. Single phased and lamellar microstructures are generated at low and high temperatures, respectively. The former exhibits enhanced tensile properties at room temperature but at the expense of a limited creep resistance. On the other hand, the latter suffers from a poor ductility.

The deformation systems which are activated are determined by post-mortem transmission electron microscopy. The behavior of the single phased-alloy is analyzed in terms of the Hall-Petch law.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Munir, Z.A., Anselmi-Tamburini, U., Ohyanagi, M., Journal of Materials Science 41, 763 (2006).Google Scholar
2. Mei, B. C., Miyamoto, Y., Metallurgical and Materials Transactions A 32, 843 (2001).Google Scholar
3. Calderon, H.A., Garibay-Febles, V., Umemoto, U., Yamaguchi, M., Materials Science and Engineering A329–331, 196 (2002).Google Scholar
4. Kim, K. W., Journal of metallurgy, part III, 30 (1994).Google Scholar
5. Marketz, W.T., Fischer, F. D., Kaufmann, RF., Dehm, G., Bidlinger, T., Wanner, A., Clemens, H., Materials Science and Engineering A329–331, 177 (2002).Google Scholar
6. Berteaux, O., Thèse de doctorat, Université de Poitiers, France, (2005).Google Scholar
7. Schlögl, S.M., Fischer, F. D., Philosophical Magazine A, 75, 621 (1997).Google Scholar
8. Cheng, T.T., Intermetallics 8, 29 (2000)Google Scholar
9. Malaplate, J., Caillard, D., Couret, A., Philosophical Magazine A, 84, 3671 (2004).Google Scholar
10. Malaplate, J., Thomas, M., Belaygue, P., Grange, M., Couret, A., Acta Metall. Mater. 54, 601 (2006).Google Scholar
11. Thomas, M., Oral communication at the International workshop on γ?TiAl technologies Bamberg, Allemagne, 2931 mai (2006).Google Scholar
12. Viguier, B., Bonneville, J., Martin, J. L., Acta Metall. Mater. 44, 4403 (1996).Google Scholar
13. Grégori, F., Thèse de doctorat, Université de Paris 6, France, (1999).Google Scholar
14. Nakano, T., Matsumoto, K., Seno, K., Oma, K., Umakoshi, Y, Philosophical Magazine A, 74, 251 (1996).Google Scholar
15. Inui, H., Matsumuro, M., Wu, D.H., Yamaguchi, M., Philosophical Magazine A, 75, 395 (1997).Google Scholar