Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T01:53:32.016Z Has data issue: false hasContentIssue false

Effect of Si and Ge Interface Layers on the Schottky Barrier Height of Metal Contacts to GaAs

Published online by Cambridge University Press:  25 February 2011

J.R. Waldrop
Affiliation:
Rockwell International Science Center, Thousand Oaks, CA 91360
R.W. Grant
Affiliation:
Rockwell International Science Center, Thousand Oaks, CA 91360
Get access

Abstract

A new approach for extending the range of the Schottky barrier height ϕB of metal contacts to (100) GaAs is described. Very thin (∼ 10-30Å) heavily n-type and p-type Si or Ge interlayers are found to directly alter the GaAi interface Fermi energy EF. X-ray photoemission spectroscopy is used to determine EF during contact formation and the corresponding ϕB for thick contacts is measured by electrical methods. In an appropriate structure the ϕB range for contacts to n-type GaAs is ∼ 0.25 to 1.0 eV. For p-type GaAs ϕB has been increased to as much as 0.9 eV. This method of ϕBcontrol can be used for both Schottky barrier contact and nonalloyed ohmic contact applications. The results are interpreted in terms of a simple heterojunction model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Waldrop, J.R. and Grant, R.W., Appl. Phys. Lett. 50, 250 (1987).CrossRefGoogle Scholar
2. Grant, R.W. and Waldrop, J.R., J. Vac. Sci. Technol. B5, 1015 (1987).Google Scholar
3. Waldrop, J.R. and Grant, R.W., Appl. Phys. Lett. 52, 1794 (1988).Google Scholar
4. Waldrop, J.R. and Grant, R.W., J. Vac. Sci. Technol. B6, 1432 (1988).CrossRefGoogle Scholar
5. Waldrop, J.R., Appl. Phys. Lett. 53, 1518 (1988).CrossRefGoogle Scholar
6. Waldrop, J. R., Grant, R.W., and Kraut, E.A., J. Vac. Sci. Technol. B5, 1209 (1987).CrossRefGoogle Scholar
7.XPS analysis indicates that this material is arsenic rich but for simplicity it is referred to as NiAs.Google Scholar
8. Chang, C.Y., Fang, Y.K., and Sze, S.M., Solid-State Electron. 14, 541 (1971).Google Scholar
9. Shannon, J.M., Solid-State Electron. 19, 537 (1976).Google Scholar
10. Waldrop, J.R., Kraut, E.A., Kowalczyk, S.P., and Grant, R.W., Surf. Sci. 132, 513 (1983).CrossRefGoogle Scholar
11. Monch, W. and Gant, H., Phys. Rev. Lett. 48, 512 (1982).Google Scholar
12. Chen, P., Bolmont, D., and Sebenne, C.A., J. Phys. C 15, 6101 (1982).Google Scholar
13. Kowalczyk, S.P., Grant, R.W., Waldrop, J.R., and Kraut, E.A., J. Vac. Sci. Technol. B1, 684 (1983).Google Scholar
14. Brugger, H., Schaffler, F., and Abstreiter, G., Phys. Rev. Lett. 52, 141 (1984).Google Scholar
15. Chiaradia, P., Katnani, A.D., Sang, H.W. Jr, and Bauer, R.S., Phys. Rev. Lett. 52, 1246 (1984).CrossRefGoogle Scholar
16. List, R.S., Woicik, J., Mahowald, P.H., Lindau, I., and Spicer, W.E., J. Vac. Sci. Technol. A5, 1459 (1987).Google Scholar
17. Grant, R.W., Waldrop, J.R., Kowalczyk, S.P., and Kraut, E.A., J. Vac. Sci. Technol. 19, 477 (1981).Google Scholar