Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T01:40:20.905Z Has data issue: false hasContentIssue false

Effect Of RTA On TiN Films As The Barrier Layer for Pt/BST/Pt Capacitors Prepared By RF Magnetron Co-sputter Technique At Low Substrate Temperature

Published online by Cambridge University Press:  21 March 2011

Miin-Horng Juang
Affiliation:
Department of Electronics Engineering, National Taiwan University of Science and Technology, Kee-Lung Rd., 106 Taipei, Taiwan, R.O.C.
Chuan-Chou Hwang
Affiliation:
Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, 300 Hsinchu, Taiwan, R.O.C.
Huang-Chung Cheng
Affiliation:
Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, 300 Hsinchu, Taiwan, R.O.C.
Get access

Abstract

Effect of rapid-thermal-annealing on metallic barrier TiN against the interdiffusions of Ti and Si into BST in Pt/BST/Pt/TiN/Ti/Si capacitors has been studied. In the integration of BST capacitors, the thermal budget of the BST deposition would cause the inter-diffusions of Ti and Si from Ti adhesion layer and Si-plug respectively. This event would degrade the BST capacitors. To address this issue, rapid-thermal-annealed TiN barriers were used between the bottom electrode Pt and adhesion layer Ti. Optimal RTA condition for TiN were found in this experiment. Excellent electrical characteristics of Pt/BST/Pt/TiN/Ti/Si capacitors, including high dielectric constant (εr =320), low leakage current (1.5×10−8 A/cm2) under 0.1 MV/cm, and life time longer than 10 year lifetime under 1.6 MV/cm were obtained with Ar+O2 mixed ambient at a low substrate temperature (300°C).

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Koyama, K., Sakuma, T., Yamamichi, S., Watanabe, H., Aoki, H., Ohya, S., Miyasaka, Y., and Kikkawa, T., in IEDM Tech. Dig., p. 823(1991).Google Scholar
2. Shimada, Y., Inoue, A., Nasu, T., Arita, K., Nagano, Y., Matsuda, A., Uemoto, Y., Fujii, E., Azuma, M., Oishi, Y., Hayashi, S. I., Otsuki, T., Jpn. J. Appl. Phys. 35, 140(1996).Google Scholar
3. May, T. C. and Wood, M. H., IEEE Trans. Electron Devices 26, 2(1979).Google Scholar
4. Fujii, E., Uemoto, Y., Hayashi, S., Nasu, T., Shimada, Y., Matsuda, A., Kibe, M., Azuma, M., Otsuki, T., Kano, G., Scott, M., Mcmillan, L. D., and Araujo, C. A. Paz de, in IEDM Tech. Dig., p.267(1992).Google Scholar
5. Yuuki, A., Yamamuka, M., Makita, T., Makita, T., Hotikawa, T., Shibano, T., Hirano, N., Maeda, H., Mikami, N., Ono, K., Ogata, H., and Abe, H., in IEDM Tech. Dig., p.115(1995).Google Scholar
6. Takemura, K., Yamamichi, S., Lesaicherre, P-Y, Tokashiki, K., Miyamoto, H., Ono, H., Miyasaka, Y., and Yoshida, M., Jpn. J. Appl. Phys. 34, 5224(1995).Google Scholar
7. Yamaguchi, H., Iizuka, T., Koga, H., Takemura, K., Sone, S., Yabuta, H., Yamamichi, S., Lesaicherre, P. Y., Suzuki, M., Kojima, Y., Nakajima, K., Kasai, N., Sakuma, T., Kato, Y., Miyasaka, Y., Yoshida, M., Nishimoto, S., in IEDM Tech. Dig., p. 675(1996).Google Scholar
8. Tsai, M. S. and Tseng, T. Y., J. Am. Ceram. Soc. 82, 351(1999).Google Scholar
9. Tsai, M. S., Sun, S. C., and Tseng, T. Y., J. Appl. Phys. 82(7), 3482 (1997).Google Scholar