Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:29:30.951Z Has data issue: false hasContentIssue false

Effect of RF Plasma on Silicon Nitride Deposition from SiF4/NH3 Gas Mixtures in a Hot Wall Reactor

Published online by Cambridge University Press:  21 February 2011

C. Gomez-Aleixandre
Affiliation:
Instituto Ciencia de Materiales, CSIC, Universidad Autónoma,C12. Cantoblanco, 28049 Madrid.Spain
O. Sanchez
Affiliation:
Instituto Ciencia de Materiales, CSIC, Universidad Autónoma,C12. Cantoblanco, 28049 Madrid.Spain
J. M. Albella
Affiliation:
Instituto Ciencia de Materiales, CSIC, Universidad Autónoma,C12. Cantoblanco, 28049 Madrid.Spain
Get access

Abstract

Si3N4 films have been deposited on silicon substrates at high temperatures (800–1000° C) in a plasma CVD hot wall reactor using SiF4 and NH3 as primary reactant gases. In this range of temperatures the activation energy is 35.9 Kcal mol−1 grad−1. The effect of an RF plasma induced either in the up or in the down stream configuration has been evaluated. The results show that in the 200–400 w range the reaction rate increases linearly with the RF power. The addition of hydrogen to the above gas mixture also produces an enhancement of the deposition reaction, probably as a consequence of the inhibition of the etching effect of the fluorine atoms on the Si3N4 deposited layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

l.-Livengood, R.E. and Hess, D.W., Thin Solid Films,12, 59(1988).Google Scholar
2.-Dharmadhikari, V.S., Thin Solid Films, 153, 459 (1989).Google Scholar
3.-Fujita, S., Toyoshima, H., Ohishi, T. and Sasaki, A., Jpn.J.Appl. Phys.,23,L144 (1984).Google Scholar
4.-Galasso, F.,Kuntz, U. and Croft, W.J., J.Amer.Ceram.Soc.,55, 431(1972).Google Scholar
5.-Toatsu, Mitsui Chemicals, Inc, Jpn. Patent n°59 174 506(1984).Google Scholar
6.-Hitachi Ltd., Jpn. Patent. n°60 107 841(1985).Google Scholar
7.-Gómez-Aleixandre, C.,Sánchez, O. and Albella, J.M., submitted to J.Mat.Sci. (1990).Google Scholar
8.-Chang, C.P., Flamm, D.L., Ibbotson, D.E. and Mucha, J.,J.Appl.Phys. 82,1406 (1987).Google Scholar
9.-Matsuda, A., Matsumura, M., Nakagama, K., Yamasaki, S. and Tanaka, K., J. Physique, 42,687(1981).Google Scholar
10.-Fujita, S., Toyoshima, H., Ohishi, T. and Sasaki, A., Jpn.Appl.Phys., 23,L268(1984).Google Scholar
ll.-Dun, H., Pan., P. Write, F.R. and Douse, R.W.,J.Electrochem. Soc., 128, 1555(1981).Google Scholar
12.-Boening, H.V., in “Fundamentals of Plasma Chemistry and Technology”, ( Technomic Pub. Co. Inc., Lancaster.1988) chap.8.Google Scholar
13.-Ven, W van der, Solid State Technol., April, 167 (1981).Google Scholar