Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T05:42:59.406Z Has data issue: false hasContentIssue false

The Effect of γ-radiation on Mechanical Properties of Model UK Nuclear Waste Glasses

Published online by Cambridge University Press:  21 February 2013

Owen J. McGann
Affiliation:
Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
Amy S. Gandy
Affiliation:
Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
Paul A. Bingham
Affiliation:
Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
Russell J. Hand
Affiliation:
Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
Neil C. Hyatt
Affiliation:
Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
Get access

Abstract

The effect of γ-radiation on the mechanical properties of model UK intermediate and high level nuclear waste glasses was studied up to a dose of 8 MGy. It was determined that γ-irradiation up to this dose had no measurable effect upon the Young’s modulus, shear modulus, Poisson’s ratio, indentation hardness, or indentation fracture toughness. The absence of measurable radiation induced changes in mechanical properties was attributed to redox mediated healing of electron-hole pairs generated by γ-irradiation by multivalent transition metal ions, in particular the Fe3+ - Fe2+ couple.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hutson, N. D., Herman, C. A., and Zamecnik, J. R., US DOE Report No.WSRC-MS-2000-00884, http://sti.srs.gov/fulltext/ms2000884/ms2000884.html, (2000).Google Scholar
Sheng, J., Glass Technol Eur J Glass Sci Technol A. 45, 153 (2004).Google Scholar
Morozov, V. A., IAEA Bull. 21, 17 (1979).Google Scholar
“Application of Thermal Technologies for Processing of Radioactive Waste, IAEA-TECDOC-1527, December (2006).Google Scholar
Weber, W. J., Nucl Inst Meth Phys Res B. 32, 471 (1998).CrossRefGoogle Scholar
Ewing, R. C., Weber, W. J., Clinard, F.Jr., Prog Nucl Energy. 29, 63 (1995).CrossRefGoogle Scholar
Sun, K., Wang, L. M., Ewing, R. C., Weber, W. J., Nucl Inst Meth Phys Res B. 218, 368 (2004).CrossRefGoogle Scholar
Brown, G. J., J Mater Sci. 10, 1841 (1975).CrossRefGoogle Scholar
Vanina, E. A., Chibisova, M. A., Sokolova, S. M., Glass Ceram. 63, 11 (2006).CrossRefGoogle Scholar
Brown, G. J., J Mater Sci. 10, 1481 (1975).CrossRefGoogle Scholar
Davis, W. R., Trans Brit Ceram Soc. 67, 515 (1968).Google Scholar
Matzke, H., Toscano, E., J Am Ceram Soc. 69, C138 (1986).CrossRefGoogle Scholar
Connelly, A. J., Hand, R., Bingham, P. A., Hyatt, N. C., J Nucl Mater. 408, 188 (2011).CrossRefGoogle Scholar
Shelby, J., J Appl Phys. 51, 2561 (1980).CrossRefGoogle Scholar
Griscom, D. L., Merzbacher, C. I., Weeks, R. A., Zuhr, R. A., J Non-Cryst Solids. 258, 34 (1999).CrossRefGoogle Scholar
Olivier, F. Y., Boizot, B., Ghaleb, D., Petite, G., J Non-Cryst Solids. 351, 1061 (2005).CrossRefGoogle Scholar
Debnath, R., J Mater Res. 6, 127 (2001).CrossRefGoogle Scholar
Malchukova, E., Boizot, B., Petite, G., Ghaleb, D., Eur Phys J Appl Phys. 45, 10701 (2009).CrossRefGoogle Scholar