Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T00:22:53.731Z Has data issue: false hasContentIssue false

Effect of pressure-enhanced single step annealing on the silicon photoluminescence

Published online by Cambridge University Press:  11 February 2011

S. Binetti
Affiliation:
INFM and Department of Material Science, University of Milano-Bicocca, via Cozzi 53 Milano, Italy
A. Le Donne
Affiliation:
INFM and Department of Material Science, University of Milano-Bicocca, via Cozzi 53 Milano, Italy
V.V. Emtsev Jr
Affiliation:
Van der Waals – Zeeman Institute Amsterdam University, Valckenierstraat 65 NL-1018 XE Amsterdam, The Netherlands
V.V Emtsev
Affiliation:
Russian Academy of Sciences, Ioffe Physico-Technical Inst., St Petersburg, RUSSIA
S. Pizzini
Affiliation:
INFM and Department of Material Science, University of Milano-Bicocca, via Cozzi 53 Milano, Italy
Get access

Abstract

The effect of single-step annealing under GPa hydrostatic pressures on the photoluminescence of Cz silicon samples has been investigated at 450, 650 and 1000°C. It has been demonstrated that the effect of applied pressure begins to be detectable at 650°C and significant at 1000°C, where not only the effect of the applied pressure but also that of the dopants was clearly evidenced. In the first case the presence of a gap level associated to self-interstitial clusters could be argued, while in the second case both the oxide segregation and the dislocation formation was shown to be enhanced by the pressure and selectively addressed to the type of doping, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pizzini, S., Guzzi, M., Grilli, E., Borionetti, G., J. Phys.: Condens. Matter 12, 10131 (2000)Google Scholar
2. Binetti, S., Pizzini, S., Leoni, E., Somaschini, R., Castaldini, A., Cavallini, A., J. Appl. Phys. 92, 2437 (2002)Google Scholar
3. Huh, J.Y., Gösele, U., Tan, T.Y., J. Appl. Phys. 78, 5926 (1995)Google Scholar
4. Misiuk, A., Phys. Stat. Sol (a) 171, 191 (1999)Google Scholar
5. Emtsev, V.V., Andreev, B.A., Misiuk, A., Jung, W., Schmalz, K., Appl. Phys. Lett. 71, 264 (1997)Google Scholar
6. Leoni, E., Martinelli, L., Binetti, S., Pizzini, S., submitted to Applied Physics Letters (October 2002)Google Scholar
7. Clayes, C., J. Phys.: Condens. Matter (2002) in pressGoogle Scholar
8. Misiuk, A., Surma, H.B., Jun, J., Bak-Misiuk, J., Domatala, J., Antonova, I.V., Popov, V.P., Romano-Rodriguez, A., Lopez, M., J. Alloys and Comp. 286, 258 (1999)Google Scholar
9. Emtsev, V.V. Jr, Ammerlaan, C. A J., Andreev, B.A., Emtsev, V.V., Oganesyan, G.A., Misiuk, A., Londos, C.A., J. Materials Science: Materials in Electronics 12, 223 (2001)Google Scholar
10. Pizzini, S., Binetti, S., Leoni, E., Le Donne, A., Acciarri, M., Castaldini, A., MRS Proc. Vol. 692, 275 (2001)Google Scholar
11. Heijmink Liesert, B.J., Gregorkiewicz, T., Ammerlaan, C.A.J., Phys. Rev. B 46(4), 2034 (1992)Google Scholar
12. Davies, G., Physics Reports 176, 83 (1989)Google Scholar
13. Blumenau, A.T., Jones, B., Öberg, S., Frauenheim, T., Briddon, P.R., J. Phys.: Condens. Matter 12, 10123 (2000)Google Scholar
14. Pantelides, S.T., Ramamoorthy, M., MRS Proc. Vol. 490, 59 (1998)Google Scholar
15. Pankove, J. L., Optical Processes in Semiconductors (Dover, New York, 1971).Google Scholar