Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T04:28:49.448Z Has data issue: false hasContentIssue false

Effect of Pressure on Order and Stability in Alloys: The Case of Al-Ge

Published online by Cambridge University Press:  01 January 1992

P. E. A. Turchi
Affiliation:
Lawrence Livermore National Laboratory, Condensed Matter Division (L-268), Livermore, CA 94550
M. Sluiter
Affiliation:
Lawrence Livermore National Laboratory, Condensed Matter Division (L-268), Livermore, CA 94550
G. M. Stocks
Affiliation:
Oak Ridge National Laboratory, Metals and Ceramics Division, Oak Ridge TN 37831-6114
Get access

Abstract

A parameter-free approach to phase stability in substitutional alloys is applied to the influence of pressure on order-disorder phenomena in Al-Ge. The methodology is based upon an application of the Generalized Perturbation Method to the Korringa-Kohn-Rostoker scattering formulation of the Coherent Potential Approximation. For fcc-based Al-Ge alloys, it is shown that the tendency towards phase separation at normal pressure originates from a structural difference between the pure species. By applying pressure, the structural energy difference is reduced, and a significant increase in the tendency towards order, especially for Al-rich alloys, is theoretically observed, leading, as an example, to the possible observation of a DO22 ordered state around 25 at. pct. Ge. The electronic origin of the ordering tendencies induced by pressure is discussed and the theoretical predictions are related to experimental facts.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Degtyareva, V. F. and Ponyatowskii, E. G., Sov. Phys. Solid State 24 (9), 1514 (1982).Google Scholar
2. Banova, S. M., Korsunskaya, I. A., Kuznetsov, G. M. and Sergeyev, V. A., Phys. Met. Metall. 46, 58 (1979).Google Scholar
3. Degtyareva, V. F., Chipenko, G. V., Ponyatovskii, E. G. and Rashchupkin, V. I., Sov. Phys. Solid State 26 (4), 733 (1984).Google Scholar
4. Degtyareva, V. F., Chipenko, G. V., Belash, I. T., Barkalov, O.I. and Ponyatovskii, E. G., Phys. Stat. Sol. (a) 89, K127 (1985).Google Scholar
5. Barkalov, O. I., Belash, I. T., Degtyareva, V. F. and Ponyatovskii, E. G., Sov. Phys. Solid State 29 (7), 1138 (1987).Google Scholar
6. Binary Alloy Phase Diagrams, Massalski, T. B. ed. (ASM International, Materials Park, OH, 1990), vols. 1 to 3.Google Scholar
7. Turchi, P. E. A., Mater. Sci. and Eng. A127, 145 (1990); and references cited therein.Google Scholar
8. Turchi, P. E. A., Sluiter, M., Pinski, F. J., Johnson, D. D., Nicholson, D. M., Stocks, G. M. and Staunton, J. B., Phys. Rev. Lett 67, 1779 (1991); Erratum 68, 418 (1992).Google Scholar
9. Ducastelle, F. and Gautier, F., J. Phys. F6, 2039 (1976).Google Scholar
10. Turchi, P. E. A., Stocks, G. M., Butler, W. H., Nicholson, D. M., and Gonis, A., Phys. Rev. B37, 5982 (1988).Google Scholar
11. Faulkner, J. S., Progress in Materials Science 27, 1 (1982); and references cited therein.Google Scholar
12. Birch, J., J. Geophys. Res. 83, 1257 (1978); Murnagham, F. D., Proc. Nat. Acad. Sci. 30, 244 (1944).Google Scholar
13. Kanamori, J. and Kakehashi, Y., J. Phys. (Paris) 38, C7274 (1977).Google Scholar
14. Yin, M. T. and Cohen, M. L., Phys. Rev. 26, 5668 (1982).Google Scholar
15. Moriarty, J. A. and McMahan, A. K., Phys. Rev. Lett. 48, 809 (1982); McMahan, A. K. and Moriarty, J. A., Phys. Rev. B27, 3235 (1983).Google Scholar