Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:42:51.397Z Has data issue: false hasContentIssue false

The Effect of Phosphine Pressure on the Band Gap of Ga0.5In0.5P

Published online by Cambridge University Press:  22 February 2011

Sarah R. Kurtz
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
D. J. Arent
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
K. A. Bertness
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
J. M. Olson
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
Get access

Abstract

The band gap of Ga0.51n0.5P is studied as a function of phosphine pressure, B-type substrate misorientation, growth rate, and growth temperature, with emphasis placed on the effect of the phosphine pressure. Over most of the parameter space explored (high temperatures, large substrate misorientations, and low growth rates), the band gap increases with decreasing phosphine. This increase is proposed to be caused by lower phosphorus coverage of the surface, resulting in a different surface structure that doesn't promote ordering. The implications of this effect on the observed variations of band gap with growth temperature, substrate misorientation, and growth rate are discussed. For regions of parameter space in which the ordering appears to be kinetically limited by surface diffusion, the band gap increases slightly with phosphine pressure, consistent with observations that increased group-V pressure decreases the group-III surface diffusion length.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kurtz, S. R., Olson, J. M. and Kibbler, A., Appl. Phys. Lett. 57, 1922 (1990).Google Scholar
2. Kondow, M., Kakibayashi, H., Minagawa, S., Inoue, Y., Nishino, T. and Hamakawa, Y., Appl. Phys. Lett. 53, 2053 (1988).Google Scholar
3. Gomyo, A., Kobayashi, K., Kawata, S., Hino, I., Suzuki, T. and Yuasa, T., J. Cryst. Growth 77, 367 (1986).Google Scholar
4. Gomyo, A., Suzuki, T., Kobayashi, K., Kawata, S., Hino, I. and Yuasa, T., Appl. Phys. Lett. 50, 673 (1987).Google Scholar
5. Suzuki, T., Gomyo, A., Iijima, S., Kobayashi, K., Kawata, S., Hino, I. and Yuasa, T., Jpn. J. Appl. Phys. 27, 2098 (1988).Google Scholar
6. Cao, D. S., Kimball, A. W., Chen, G. S., Fry, K. L. and Stringfellow, G. B., J. Appl. Phys. 66, 5384 (1989).Google Scholar
7. Cao, D. S., Reihlen, E. H., Chen, G. S., Kimball, A. W. and Stringfellow, G. B., J. Cryst. Growth 109, 279 (1991).Google Scholar
8. Kurtz, S. R., Olson, J. M., Friedman, D. J., Kibbler, A. E. and Asher, S., J. Electron. Mater. 23, 431 (1994).Google Scholar
9. Kurtz, S. R., Olson, J. M., Arent, D. J., Kibbler, A. E. and Bertness, K. A. in Common Themes and Mechanisms of Epitaxial Growth, edited by Fuoss, P., Tsao, J., Kisker, D. W., Zangwill, A. and Kuech, T. (Mater. Res. Soc. Proc. 312, Pittsburgh, PA, 1993) p. 83.Google Scholar
10. Suzuki, M., Nishikawa, Y., Ishikawa, M. and Kokubun, Y., J. Cryst. Growth 113, 127 (1991).Google Scholar
11. Buchan, N., Heuberger, W., Jakubowicz, A. and Roentgen, P., Inst. Phys. Conf. Ser. 120, 529 (1991).Google Scholar
12. Lin, J. F., Jou, M. J., Chen, C. Y. and Lee, B. J., J. Cryst. Growth 124, 415 (1992).Google Scholar
13. Kurtz, S. R., Olson, J. M., Arent, D. J., Bode, M. H. and Bertness, K. A., Appl. Phys. Lett. 75, in press. (1994).Google Scholar
14. Suzuki, T. and Gomyo, A. in Semiconductor Interfaces at the Sub-Nanometer Scale, edited by Salemink, H. W. M. and Pashley, M. D. (Kluwer Academic 243, Dordrecht, Netherlands, 1993) p. 11.Google Scholar
15. Suzuki, T., Gomyo, A., Hino, I., Kobayashi, K., Kawata, S. and Iijima, S., Jpn. J. Appl. Phys. 27, L1549 (1988).Google Scholar
16. Gomyo, A., Hotta, H., Hino, I., Kawata, S., Kobayashi, K. and Suzuki, T., Jpn. J. Appl. Phys. 28, L1330 (1989).Google Scholar
17. Kurtz, S. R., Olson, J. M., Goral, J. P., Kibbler, A. and Beck, E., J. Electron. Mater. 19, 825 (1990).Google Scholar
18. Gomyo, A., Suzuki, T. and lijima, S., Phys. Rev. Lett. 60, 2645 (1988).Google Scholar
19. Wei, S.-H. and Zunger, A., Appl. Phys. Lett. 56, 662 (1990).Google Scholar
20. Gavrilovic, P., Dabkowski, F. P., Meehan, K., Williams, J. E., Stutius, W., Hsieh, K. C., Holonyak, N., Shahid, M. A. and Mahajan, S., J. Cryst. Growth 93, 426 (1988).Google Scholar
21. Murgatroyd, I. J., Norman, A. G. and Booker, G. R., J. Appl. Phys. 67, 2310 (1990).Google Scholar
22. LeGoues, F. K., Kesan, V. P., Iyer, S. S., Tersoff, J. and Tronmp, R., Phys. Rev. Lett. 64, 2038 (1990).Google Scholar
23. Froyen, S. and Zunger, A., J. Vac. Sci. Tech. B 9, 2176 (1991).Google Scholar
24. Gomyo, A., Makita, K., Hino, I. and Suzuki, T., Phys. Rev. Lett. 72, 673 (1994).Google Scholar
25. Ayers, J. E., Ghandhi, S. K. and Schowalter, L. J., J. Cryst. Growth 113, 430 (1991).Google Scholar
26. Nagata, S. and Tanaka, T., J. Appl. Phys. 48, 940 (1977). The surface diffusion process that they characterize is probably different from the diffusion process that leads to ordering. Nevertheless, it is likely that both processes show similar dependencies on phosphine pressure.Google Scholar
27. Osorio, R., Bernard, J. E., Froyen, S. and Zunger, A., Phys. Rev. B 45, 11173 (1992).Google Scholar
28. Buchan, N., Larsen, C. A. and Stringfellow, G. B., Appl. Phys. Lett. 51, 1024 (1987).Google Scholar
29. Hori, H., Ishikawa, H. and Mashita, M., Jpn. J. Appl. Phys. Lett. 32, L707 (1993).Google Scholar