Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T20:58:29.018Z Has data issue: false hasContentIssue false

Effect of Molecular Weight on the Photovoltaic Performance of a Low band gap Copolymer blended with ICBA

Published online by Cambridge University Press:  04 June 2013

Olzhas Ibraikulov
Affiliation:
Nazarbayev University Research and Innovation System, Department of Renewable Energy, 53 Kabanbay Batyr Ave., Block 9, Astana, 010000, Kazakhstan
Rony Bechara
Affiliation:
Laboratoire des Sciences de l'Ingénieur, de l'Informatique et de l'Imagerie (ICUBE), Département Electronique du Solide, Systèmes & Photonique, Université de Strasbourg, BP20, 67037 Strasbourg Cedex 2
Patrick Lévêque
Affiliation:
Laboratoire des Sciences de l'Ingénieur, de l'Informatique et de l'Imagerie (ICUBE), Département Electronique du Solide, Systèmes & Photonique, Université de Strasbourg, BP20, 67037 Strasbourg Cedex 2
Nicolas Leclerc
Affiliation:
Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, Universite de Strasbourg, Ecole Europeenne de Chimie, Polymeres et Materiaux, 25 rue Becquerel, 67087 Strasbourg, France
Galymzhan Koishiyev
Affiliation:
Nazarbayev University Research and Innovation System, Department of Renewable Energy, 53 Kabanbay Batyr Ave., Block 9, Astana, 010000, Kazakhstan
Thomas Heiser
Affiliation:
Laboratoire des Sciences de l'Ingénieur, de l'Informatique et de l'Imagerie (ICUBE), Département Electronique du Solide, Systèmes & Photonique, Université de Strasbourg, BP20, 67037 Strasbourg Cedex 2
Get access

Abstract

An increase in molecular weight of the polymer generally impedes solubility in common solvents and may influence the polymer optoelectronic properties as well. Indeed, higher molecular weights are expected to increase charge carrier mobilities and therefore give rise to better photovoltaic performances of bulk heterojunction solar cells. In this work, we use copolymers based on 2,1,3-benzothiadiazole, thiophene and thieno[3,2-b]thiophene units of various fractions differing in molecular weights almost by a factor of 4 with a fullerene based acceptor material Indene-C60 Bisadduct (IC[60]BA) to elaborate bulk heterojunction solar cells. We investigate the influence of post-deposition annealing temperatures and polymer:fullerene ratios on the final cell performances. We use IC[60]BA as an acceptor to enhance the open circuit voltage due to its high lying LUMO level [1]. Additionally, charge carrier mobilities were probed using bottom contact organic field-effect transistors. As expected, higher molecular weights (as long as homogeneity was maintained) resulted in an increase of the hole field-effect mobility (up to 7x10-3 cm2V-1s-1). Consequently, the power conversion efficiencies of bulk heterojunction solar cells could be improved by increasing the copolymer molecular weight. A power conversion efficiency of 2.4% with an open circuit voltage of 0.82V was reached in a standard device configuration with aluminum as a cathode after post-deposition thermal annealing.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

0Kang, H., Cho, C.-H., Cho, H.-H., Kang, T. E., Kim, H. J., Kim, K.-H., Yoon, S. C. and Kim, B. J., ACS Appl. Mater. Interfaces, 4, 110 (2012).CrossRefGoogle Scholar
Thompson, B. C., Fréchet, J. M. J., Angew. Chem. Int. Ed. 47, 58 (2008).CrossRefGoogle Scholar
Li, Y. F., Zou, Y. P., Adv. Mater. 20, 2952 (2008).CrossRefGoogle Scholar
Chen, H.-Y., Hou, J. H., Zhang, S. Q., Liang, Y. Y., Yang, G. W., Yang, Y., Yu, L. P., Wu, Y., Li, G., Nat. Photonics, 3, 649 (2009).CrossRefGoogle Scholar
Ma, W. L., Yang, C. Y., Gong, X., Lee, K. H., Heeger, A. J., Adv. Funct. Mater. 15, 1617 (2005).CrossRefGoogle Scholar
Li, G., Shrotriya, V., Huang, J. S., Yao, Y., Moriarty, T., Emery, K., Yang, Y., Nat. Mater. 4, 864 (2005).CrossRefGoogle Scholar
Moulé, A. J., Meerholz, K., Adv. Mater. 20, 240 (2008).CrossRefGoogle Scholar
Xin, H., Subramaniyan, S., Kwon, T.-W., Shoaee, S., Durrant, J. R. and Jenekhe, S. A., Chem. Mater. 24, 1995 (2012).CrossRefGoogle Scholar
He, Y., Chen, H.-Y., Hou, J. H., Li, Y. F., J. Am. Chem. Soc. 132, 1377 (2010).CrossRefGoogle Scholar
Nardes, A. M., Ferguson, A. J., Whitaker, J. B., Larson, B. W., Larsen, R. E., Maturová, K., Graf, P. A., Boltalina, O. V., Strauss, S. H. and Kopidakis, N., Adv. Funct. Mater. 22, 4115 (2012).CrossRefGoogle Scholar
Zhao, G. G., He, Y. J. and Li, Y. F., Adv. Mater. 22, 4355 (2010).CrossRefGoogle Scholar
Brabec, C. J., Cravino, A., Meissner, D., Sariciftci, N. S., Fromherz, T., Rispens, M. T., Sanchez, L., Hummelen, J. C., Adv. Funct. Mater. 11, 374 (2001).3.0.CO;2-W>CrossRefGoogle Scholar
Biniek, L., Fall, S., Chochos, C. L., Leclerc, N., Leveque, P. and Heiser, T., Org. Elec. 13, 114 (2012).CrossRefGoogle Scholar
Biniek, L., Fall, S., Chochos, C. L., Anokhin, D. V., Ivanov, D. A., Leclerc, N., Leveque, P. and Heiser, T., Macromolecules, 43, 9779 (2010).CrossRefGoogle Scholar
Zaumseil, J. and Sirringhaus, H., Chem. Rev. 107, 1296 (2007).CrossRefGoogle Scholar
Kim, Y., Cook, S., Tuladhar, S. M., Choulis, S. A., Nelson, J., Durrant, J. R., Bradley, D. C., Giles, M., Mcculoch, I., Ha, C-S. and Ree, M, Nature Materials, 5, 197 (2006).CrossRefGoogle Scholar
Kline, R. J., McGehee, M. D., Kadnikova, E. N., Liu, J., and Frechet, J. M. J., Adv. Mater. 15, 1519 (2003).CrossRefGoogle Scholar
Shilinsky, P., Asawapirom, U., Scherf, U., Biele, M., Brabec, C. J., Chem. Mater. 17, 2175 (2005).CrossRefGoogle Scholar
Ma, W., Kim, J. Y., Lee, K., Heeger, A. J., Macromol. Rapid Commun. 28, 1776 (2007).CrossRefGoogle Scholar