Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T16:09:01.011Z Has data issue: false hasContentIssue false

Effect of Laser Heating on Compositions of Films Deposited from the Metal Hexacarbonyls

Published online by Cambridge University Press:  26 February 2011

K. A. Singmaster
Affiliation:
San Jose State University, Dept. of Chemistry, San Jose, CA 95192–0101
F. A. Houle
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120
Get access

Abstract

A systematic study of the composition of metal films thermally deposited by laser heating (cw 514 nm) of the group VI hexacarbonyls is described. The films are found to contain significantly lower levels of carbon and oxygen than photochemically deposited films, and are spatially inhomogeneous. Estimates of temperature to determine the extent of laser heating permit the kinetics of this process to be compared to ∞ desorption from single crystal surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Singmaster, K. A., Houle, F. A. and Wilson, R. J., J. Phys. Chem. 94, 6864 (1990) and references therein.Google Scholar
2. See for example Solanki, R., Beyer, P.K. and Collins, G.J., Appl. Phys. Lett. 41, 1048 (1982).,Google Scholar
Konstantinov, L., Nowak, R. and Hess, P., Appl. Phys. A47, 171 (1988).Google Scholar
3. Nambu, Y., Morishige, Y. and Kishida, S., Appl. Phys. Lett. 56, 2581 (1990).Google Scholar
4. Petzold, H. C., Putzar, R., Weigmann, U. and Wilke, I., Mat. Res. Symp. Proc. 101, 75 (1988).Google Scholar
5. Oprysko, M. M. and Beranek, M. W., J. Vac. Sci. Technol. B5, 496 (1987).Google Scholar
6. Farkas, J., Hamori, A. and Szabo, Z., Proc. Inter. Soc. of Opt. Eng. 1264, 362, 1990.Google Scholar
7. Kaplan, L. H. and d’Heurle, F. M., J. Electrochem. Soc. 117, 693 (1970).Google Scholar
8. Yous, B., Robin, S., Robin, J. and Donnadieu, A., Thin Solid Films 130, 181 (1985).Google Scholar
Carver, G. E., Divrechy, A., Karbal, S., Robin, J. and Donnadieu, A., Thin Solid Films 94, 269 (1982).Google Scholar
9. Flitsch, F. A., Swanson, J. R. and Friend, C. M., Surf. Sci., to be published.Google Scholar
10. Bowker, M. and King, D. A., J. Chem. Soc. Faraday 1 76, 758 (1980).Google Scholar
Leung, C., Vass, M. and Gamer, R., Surf. Sci. 66, 67 (1977).Google Scholar
11. Felder, T. E. and Estrup, P. J., Surf. Sci. 76, 464 (1978).Google Scholar
Ko, E. I. and Madix, R. J., Surf. Sci. 100, L505 (1980).Google Scholar
12. Rigby, L. J., Can. J. Phys. 42, 1256 (1964).Google Scholar
13. Benzinger, J. B., Ko, E. I. and Madix, R. J., . Catal. 54, 414 (1978).Google Scholar
14. Umbach, E. and Menzel, D., Surf. Sci. 135, 199 (1983).Google Scholar
15. Turney, W., James, S. G., Cardinahl, P., Singmaster, K. A. and Grassian, V. H., private communication.Google Scholar