Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:40:42.474Z Has data issue: false hasContentIssue false

Effect of ion-exchange on Structural, Electronic, and Vibrational Properties of the -O-Ti-O-Ti-O- Quantum Wires in ETS-10

Published online by Cambridge University Press:  19 August 2014

Mehmet Koç
Affiliation:
Micro and Nanotechnology Department, Middle East Technical University, 06800 Ankara, Turkey.
Sezin Galioglu
Affiliation:
Micro and Nanotechnology Department, Middle East Technical University, 06800 Ankara, Turkey.
Daniele Toffoli
Affiliation:
Micro and Nanotechnology Department, Middle East Technical University, 06800 Ankara, Turkey. Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey.
Hande Üstünel
Affiliation:
Micro and Nanotechnology Department, Middle East Technical University, 06800 Ankara, Turkey. Department of Physics, Middle East Technical University, 06800 Ankara, Turkey.
Burcu Akata
Affiliation:
Micro and Nanotechnology Department, Middle East Technical University, 06800 Ankara, Turkey. Central Laboratory, Middle East Technical University, 06800 Ankara, Turkey.
Get access

Abstract

The exchange of the extra-framework Na+ ions in Engelhard titanosilicate (ETS-10) with Ag+ and Ru3+ has been investigated theoretically by means of density functional theory (DFT) and experimentally, with the aim of elucidating its effects on the structural, electronic and vibrational properties of the Ti-O-Ti quantum wire. A comparison of theoretical findings and experimental Raman data in the region of Ti-O-Ti stretching reveals that the introduction of the Ag+ ions preserves the integrity of the wire to a large extent while Ru3+ ions cause large-scale distortions along with some loss in crystallinity.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, M. W., Terasaki, O., Ohsuna, T., Philippou, A., MacKay, S. P., Ferreira, A., Rocha, J., Lidin, S., Nature, 367, 347351 (1994).10.1038/367347a0CrossRefGoogle Scholar
Jeong, N. C., Lee, M. H., and Yoon, K. B., Angew. Chem. Int. Ed., 46, 58685872 (2007).10.1002/anie.200701676CrossRefGoogle Scholar
Lamberti, C., Micropor. Mesopor. Mater., 30, 155163, (1999).10.1016/S1387-1811(99)00022-0CrossRefGoogle Scholar
Pavel, C. C., Zibrowius, B., Löffler, E., and Schmidt, W., Phys. Chem. Chem. Phys., 9, 34403446, (2007).10.1039/b701773aCrossRefGoogle Scholar
Philippou, A., and Anderson, M. W., J. Catal., 189, 395400 (2000)10.1006/jcat.1999.2705CrossRefGoogle Scholar
Perdew, J. P., Burke, K., Ernzerhof, M., Phys. Rev. Lett., 77, 38653868 (1996).10.1103/PhysRevLett.77.3865CrossRefGoogle Scholar
Giannozzi, P., et al. . Journal of Physics: Condensed Matter, 21, 395502 (2009).Google Scholar
Galioğlu, S., Zahmakıran, M., Kalay, Y. E., Özkar, S., and Akata, B., Micropor. Mesopor. Mater., 159 18, (2012).10.1016/j.micromeso.2012.04.015CrossRefGoogle Scholar
Sankar, G., Bell, R. G., Thomas, J. M., Anderson, M. W., Wright, P. A., and Rocha, J., J. Phys. Chem., 100, 449452 (1996).10.1021/jp952205dCrossRefGoogle Scholar
Grillo, M. E., and Carrazza, J., J. Phys. Chem., 100, 1226112264 (1996)10.1021/jp953256dCrossRefGoogle Scholar
Zimmerman, A. M., Doren, D. J., and Lobo, R. F., J. Phys. Chem. B, 110, 89598964 (2006).10.1021/jp0608877CrossRefGoogle Scholar
Jeong, N. C., Lee, Y. J., Park, J. -H., Lim, H., Shin, C.-H., Cheong, H., and Yoon, K. B., J. Am. Chem. Soc., 131, 1308013092 (2009).10.1021/ja903638vCrossRefGoogle Scholar