Article contents
The Effect of Implant Species on the Stability of Ion Implantation Damage
Published online by Cambridge University Press: 26 February 2011
Abstract
A systematic study of the effect of the chemical species, implanted into silicon, on the stability of the residual damage has been performed. Plan-view and cross-sectional transmission electron microscopy (TEM) studies show that the stability of the end of range damage (category II) defects upon annealing depends dramatically upon the implant species. This is exemplified by the a comparison of 69Ga and 72Ge implants in which a decrease in the dislocation density by over four orders is noted for 69Ga implants compared to 72Ge implants after identical annealing cycles. Additional comparisons of species with similar atomic masses indicate that this destabilizing influence on the dislocation loops by the implant species is related to exceeding the solid solubility of the implanted species. As a result of this dislocation loop destabilization effect complete elimination of the dislocation loops can be realized after relatively short thermal cycling. Evidence is presented indicating that the precipitates which form upon exceeding the solid solubility (category V defects) are dissolving during this enhanced defect dissolution process.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1988
References
REFERENCES
- 6
- Cited by